Math, asked by gulmehak9332, 1 year ago

The value of expression (1+cosπ/10)(1+cos3π/10)(1+cos7π/10)(1+cos9π/10) is

Answers

Answered by divprsw16
0

Here π= 180°
So,
1+cos180°/10. = 1+(-1)/10. = 0
As the whole expression is multiplied, so 0×something=0
Ans. 0

Answered by aquialaska
1

Answer:

Value of the given Expression is 1/16.

Step-by-step explanation:

Given Expression:

(1+cos\,\frac{\pi}{10})(1+cos\,\frac{3\pi}{10})(1+cos\,\frac{7\pi}{10})(1+cos\,\frac{9\pi}{10})

To find: Value of the given Expression

We know that

cos\,(\frac{7\pi}{10})=cos\,(\pi-\frac{3\pi}{10})=-cos\,(\frac{3\pi}{10})

Also, cos\,(\frac{9\pi}{10})=cos\,(\pi-\frac{\pi}{10})=-cos\,(\frac{\pi}{10})

Consider,

(1+cos\,({\pi}{10}))(1+cos\,(\frac{3\pi}{10}))(1-cos\,(\frac{3\pi}{10}))(1+cos\,(\frac{9\pi}{10}))

=(1+\cos\,(\frac{\pi}{10}))(1-cos\,(\frac{\pi}{10}))(1+cos\,(\frac{3\pi}{10}))(1-cos\,(\frac{3\pi}{10}))

using, a² - b² = ( a - b )( a + b )

=(1-cos^2\,(\frac{\pi}{10}))(1-cos^2\,(\frac{3\pi}{10}))

using, sin² x + cos² x = 1  ⇒ sin² x = 1 - cos² x

=sin^2\,(\frac{\pi}{10})\:sin^2\,(\frac{3\pi}{10})

Also we know that,

sin\,(\frac{\pi}{10})=\frac{1}{4}\times(\sqrt{5}-1)

sin\,(\dfrac{3\pi}{10}) =\frac{1}{4}\times(\sqrt{5}+1)

Hence,

sin\,(\frac{\pi}{10})\:sin\,(\frac{3\pi}{10})=\frac{1}{16}\times((\sqrt{5}-1)(\sqrt{5}+1))

                              =\frac{1}{16}\times(5-1)

                              =\frac{4}{16}

                              \frac{1}{4}

Hence,

(sin\,(\frac{\pi}{10})\:sin\,(\frac{3\pi}{10}))^2=(\frac{1}{4})^2=\frac{1}{16}

Therefore, Value of the given Expression is 1/16.

Similar questions