the value of(i)^1/2+(-i)^1/2 is equal to
Answers
Answered by
9
Answer:
Required value of i^½ + ( - i )^½ is √( - 2i ).
Step-by-step explanation:
= > ( i )^( 1 / 2 ) + ( - i )^( 1 / 2 )
= > √{ ( i )^( 1 / 2 ) + ( - i )^( 1 / 2 ) }^2
Using,
( a + b )^2 = a^2 + b^2 + 2ab
= > √[ { i^½ }^2 + { - i^½ }^2 + 2( i^½ x - i½ ) ]
= > √[ ( i ) + ( - i ) + 2( - 1 x i^½ x i^½ ) ]
= > √[ i - i + 2( - 1 x ( i^½ )^2 ) ]
= > √{ 0 + 2( - 1 x i ) }
= > √( 2( - i )
= >
Hence the required value of i^½ + ( - i )^½ is √( - 2i ).
Similar questions