Math, asked by vikasmittal0126, 4 months ago

The value of int (x111 + sin111x) dx is: {limit -pi/2 to pi/2}
1.
A. 0
B. pi
C. 112
D. 111​

Answers

Answered by Anonymous
0

The value of int (x111 + sin111x) dx is: {limit -pi/2 to pi/2}

1.

A. 0

B. pi

C. 112

D. 111

Answered by pulakmath007
3

SOLUTION

TO CHOOSE THE CORRECT OPTION

\displaystyle   \sf{\int\limits_{ -  \frac{\pi}{2}}^{ \frac{\pi}{2} }  \:  ( \:  {x}^{111}  +  { \sin}^{111}x \:  )\:  \, dx }

A. 0

\displaystyle   \sf{B.  \:  \: \pi}

C. 112

D. 111

CONCEPT TO BE IMPLEMENTED

1. f(x) is said to be odd function if

f(- x) = - f(x)

2. If f(x) is a odd function then

\displaystyle   \sf{\int\limits_{ -  a}^{a }  \:  f( x )\:  \, dx  = 0}

EVALUATION

We have to find

\displaystyle   \sf{\int\limits_{ -  \frac{\pi}{2}}^{ \frac{\pi}{2} }  \:  ( \:  {x}^{111}  +  { \sin}^{111}x \:  )\:  \, dx }

Let

\displaystyle   \sf{f(x) =     {x}^{111}  +  { \sin}^{111}x \: }

Now

\displaystyle   \sf{f( - x) =     {( - x)}^{111}  +  \bigg(  { \sin \: ( - x)} \bigg)^{111} \: }

\displaystyle   \implies \:  \sf{f( - x) =      - {x}^{111}   -   { \sin}^{111}x \: }

\displaystyle   \implies \:  \sf{f( - x) =      - ({x}^{111}    +    { \sin}^{111}x) \: }

\displaystyle   \implies \:  \sf{f( - x) =      - f(x) }

So f(x) is an odd function

So by the above mentioned formula

\displaystyle   \sf{\int\limits_{ -  \frac{\pi}{2}}^{ \frac{\pi}{2} }  \:  ( \:  {x}^{111}  +  { \sin}^{111}x \:  )\:  \, dx } = 0

FINAL ANSWER

Hence the correct option is A. 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Integral (7cos^3x+8sin^3x)÷3sin^2xcos^2x

https://brainly.in/question/19287036

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions