Math, asked by chandrabhanbana007, 9 months ago

The value of k for which the system of
equations 8x + 7y = 0 and 4x + ky = 0
has a non-zero solution, is :​

Answers

Answered by tennetiraj86
1

Answer:

K should not be equal to 7/2

Attachments:
Answered by silentlover45
14

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: {8x} \: + \: {7y} \: \: = \: \: {0}
  • \: \: \: \: \: \: \: {4x} \: + \: {ky} \: \: = \: \: {0}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Value \: \: of \: \: k \: ?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: {8x} \: + \: {7y} \: \: = \: \: {0}
  • \: \: \: \: \: \: \: {4x} \: + \: {ky} \: \: = \: \: {0}

\: \: \: \: \: \: \: \therefore \: Equation  \: \: are \: \: of \: \: the \: \: form

  • \: \: \: \: \: \: \: {a_1}{x} \: + \: {b_1}{y} \: + \: {c_1} \: \: = \: \: {0}
  • \: \: \: \: \: \: \: {a_2}{x} \: + \: {b_2}{y} \: + \: {c_2} \: \: = \: \: {0}

\: \: \: \: \: \: \: \leadsto  \: \: {a_1} \: \: = \: \: {8} \: \: \: \: {b_1} \: \: = \: \: {7} \: \: \: \: {c_1} \: \: = \: \: {0}

\: \: \: \: \: \: \: \leadsto  \: \: {a_2} \: \: = \: \: {7} \: \: \: \: {b_2} \: \: = \: \: {k} \: \: \: \: {c_2} \: \: = \: \: {0}

  • \: \: \: \: \: \: \: \frac{a_1}{a_2} \: = \: \frac{b_1}{b_2}

\: \: \: \: \: \: \: \leadsto \frac{8}{4} \: \: = \: \: \frac{7}{k}

\: \: \: \: \: \: \: \leadsto {8k} \: \: = \: \: {7} \: \times \: {4}

\: \: \: \: \: \: \: \leadsto {8k} \: \: = \: \: {28}

\: \: \: \: \: \: \: \leadsto {k} \: \: = \: \: \frac{28}{8}

\: \: \: \: \: \: \: \leadsto {k} \: \: = \: \: \frac{7}{2}

  • \: \: \: \: \: \: \: Hence,  \: \: \: \: \: \: \: \: \: \: k  \: \: \leadsto \: \: \frac{7}{2}

__________________________________

Similar questions