Math, asked by navamchoudhary, 8 months ago

the value of k if the point p(2,4) is equidistant from the point A(k+1,3) and B(3,2k-1) be​

Answers

Answered by riteshsaini0823
0

Answer:

The value of k is equa to 4 or, 2.

The distance AB is 4\sqrt{2}

2

units or, 2\sqrt{13}2

13

units.

Step-by-step explanation:

Given,

The point P(3, 4) is equidistant from the points A(- 2, 3) and B(k, - 1).

To find, the value of k = ? and the distance AB = ?

∴ PA = PB

Using distance formula,

\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

PA = \sqrt{(3+2)^2+(4-3)^2}

(3+2)

2

+(4−3)

2

= \sqrt{(5)^2+(1)^2}

(5)

2

+(1)

2

= \sqrt{26}

26

PB = \sqrt{(k-3)^2+(-1-4)^2}

(k−3)

2

+(−1−4)

2

= \sqrt{k^2-6k+9+25}

k

2

−6k+9+25

= \sqrt{k^2-6k+34}

k

2

−6k+34

\sqrt{k^2-6k+34}

k

2

−6k+34

= \sqrt{26}

26

Squaring both sides, we get

k^2k

2

- 6k + 34 = 26

⇒ k^2k

2

- 6k + 8 = 0

⇒ k^2k

2

- 4k - 2k + 8 = 0

⇒ k(k - 4) -2(k - 4)

⇒ (k - 4)(k - 2) = 0

⇒ k = 4 or, 2

∴ The distance AB =

Using distance formula,

\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

Put k = 2

= \sqrt{(2+2)^2+(-1-3)^2}

(2+2)

2

+(−1−3)

2

= \sqrt{16+16}

16+16

= \sqrt{32}

32

= 4\sqrt{2}

2

units

Put k = 4

= \sqrt{(4+2)^2+(-1-3)^2}

(4+2)

2

+(−1−3)

2

= \sqrt{(6)^2+(-4)^2}

(6)

2

+(−4)

2

= \sqrt{36+16}=\sqrt{52}

36+16

=

52

= 2\sqrt{13}2

13

units

Thus, The value of k is equa to 4 or, 2.

The distance AB is 4\sqrt{2}

2

units or, 2\sqrt{13}2

13

units.

Attachments:
Similar questions