Math, asked by shivam875, 1 year ago

the value of Lim x-0 , log (5-x) - log (5+x)/x is...

Answers

Answered by MaheswariS
2

\textbf{To find:}

\textsf{The value of}

\mathsf{\lim_{x\to\;0}\;\dfrac{log(5-x)-log(5+x)}{x}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\lim_{x\to\;0}\;\dfrac{log(5-x)-log(5+x)}{x}}

\textsf{when applying limits}

=\mathsf{\dfrac{0}{0}\;form}

\textsf{By applying L Hopital's rule}

=\mathsf{\lim_{x\to\;0}\;\dfrac{\dfrac{-1}{5-x}-\dfrac{1}{5+x}}{1}}

=\mathsf{-\dfrac{1}{5}-\dfrac{1}{5}}

=\mathsf{\dfrac{-2}{5}}

\implies\boxed{\mathsf{\lim_{x\to\;0}\;\dfrac{log(5-x)-log(5+x)}{x}=\dfrac{-2}{5}}}

\textbf{Find more:}

Lim. 8x³-1 / 16x4-1

x--->1/2

https://brainly.in/question/6423235

Lt x=0 (cos7X-cos9X)/(cosX-cos5X)

https://brainly.in/question/6057974

If f(2)=4 and f'(2)=1, then find lim x tends to 2 xf(2)-2f(x)/x-2

https://brainly.in/question/5808208

Similar questions