Math, asked by nubmaster69, 10 months ago

the value of p for which both roots of the equation 4x²-20px(25p²+15p-66)=0 are less than 2 lies in​

Answers

Answered by amansharma264
5

EXPLANATION.

value of P for which both the equation

4 {x}^{2} - 20px(25 {p}^{2} + 15p - 66) = 0

are less than 2

TO FIND VALUE OF P.

according to the question,

given,

First conditions

4 {x}^{2} - 20px(25 {p}^{2} + 15p - 66) = 0

Therefore,

d \geqslant 0

( - 20p) {}^{2} - 4 \times 4(25 {p}^{2} + 15p - 66) \geqslant 0

16(25 {p}^{2} - 25 {p}^{2} - 15p + 66)  \geqslant  0

 - 15p + 66 \geqslant 0

15p - 66 \leqslant 0

p \leqslant  \frac{66}{15}

second conditions

 \frac{ - b}{2a} < 2

 \frac{20p}{8} < 2

p <  \frac{16}{20}

p <  \frac{4}{5}

Third conditions

f(2) > 0

16 - 40p + 25 {p}^{2} + 15p - 66  > 0

25 {p}^{2} - 25p - 50 > 0

 {p}^{2}  - p - 2 > 0

(p - 2)(p + 1) > 0

p \in( -  \infty \:,  - 1) \cup(2 \: , \infty)

Similar questions