Math, asked by s3watmadijairanis, 1 year ago

The value of (sin 2 20 degree + sin 2 70 degree - tan 2 45 degree) is

Answers

Answered by mnarmatha12
37
Ans is zero
Sin2 20+sin2 70=sin2 20+cos2 20=1
Tan2 45=1
1-1=0

Answered by mindfulmaisel
18

The value of \left(\sin ^{2} 20^{\circ}+\sin ^{2} 70^{\circ}-\tan ^{2} 45^{\circ}\right) is 0  

To find the value of \sin ^{2} 20^{\circ}+\sin ^{2}(70)^{\circ}-\tan ^{2} 45^{\circ} \rightarrow(1)

Finding the value of each term and substituting in equation (1)

\sin ^{2} 70^{\circ}

By using the formula of allied angles  

\sin (90-\theta)=\cos \theta

Find the number which gives 70 while subtracting with 90

\sin ^{2} 70^{\circ}=\sin ^{2}(90-20)^{\circ}

Applying the formula \sin ^{2}(90-20)^{\circ}=\cos ^{2} 20^{\circ} \rightarrow(2)\tan ^{2} 45^{\circ}

From the exact values of trigonometric angles the value of \tan 45^{\circ}=1

Therefore, the value of \tan ^{2} 45^{\circ}=\left(1^{2}\right)=1 \rightarrow(3)

Substituting equation (2) and (3) in equation (1)

\begin{array}{l}{\sin ^{2} 20^{\circ}+\sin ^{2}(70)^{\circ}-\tan ^{2} 45^{\circ}} \\ {=\sin ^{2} 20^{\circ}+\cos ^{2} 20^{\circ}-1 \rightarrow(4)}\end{array}

From the trigonometric identities \sin ^{2} \theta+\cos ^{2} \theta=1

Therefore \sin ^{2} 20^{\circ}+\cos ^{2} 20^{\circ}=1 using the above identity

Substituting in equation (4)  

= 1-1

=0.

Similar questions