The value of (Sinθtanθ)/(1-cosθ) + tan²θ - sec²θ is
( a ) sinθcosθ
( b ) secθ
( c ) tanθ
( d ) cosecθ
Answers
Answered by
1
First method
sin θ = cos θ
Sinθ= sin(90°-θ)
Thus we have
θ = 90°-90°-θ
2θ = 90°
θ=45°
Now we know θ=45°
2 tan²θ + sin²θ – 1
=2 tan²45° + sin²45° – 1
=2(1)² + (1/√2)² -1
= 2 +(1/2) -1
=1+1/2
=3/2
Second Method
sin θ = cos θ
sin θ/cos θ = 1
tanθ = 1
tanθ = 1/1
so perpendicular = 1 , base =1 and hypotonuse = √2
Sinθ = perpendicular / hypotonuse = 1/√2
2 tan²θ + sin²θ – 1
=2(1)² + (1/√2)² -1
= 2 +(1/2) -1
=1+1/2
=3/2
please mark as brainleist
Similar questions
Environmental Sciences,
4 days ago
Environmental Sciences,
4 days ago
Environmental Sciences,
4 days ago
English,
9 days ago
English,
9 days ago
Chemistry,
8 months ago
Math,
8 months ago
English,
8 months ago