Math, asked by ritvikdandi2006, 2 months ago

The value of sin45 degrees X cos30 degrees +cos45 degrees sin 30 degrees

Answers

Answered by Anonymous
6

Step-by-step explanation:

Sin 45°=1/√2

Sin 45°=1/√2Cos45°=1/√2

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2=√3\2√2 + 1\2√2

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2=√3\2√2 + 1\2√2=√3 +1\2√2

Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2=√3\2√2 + 1\2√2=√3 +1\2√2Therefore answer is √3+1\2√2

Similar questions