Math, asked by shreyabehl, 2 months ago

The value of sin6°sin42°sin 66°sin 102° is equal to k then 1/2k​

Answers

Answered by pulakmath007
4

SOLUTION

GIVEN

 \displaystyle \sf{  \sin  {6}^{ \circ} \sin  {42}^{ \circ}   \sin  {66}^{ \circ}  \sin  {102}^{ \circ}  = k}

TO DETERMINE

The value of

 \displaystyle \sf{  \frac{1}{2k} }

EVALUATION

Here it is given that

 \displaystyle \sf{  \sin  {6}^{ \circ} \sin  {42}^{ \circ}   \sin  {66}^{ \circ}  \sin  {102}^{ \circ}  = k}

Now

 \displaystyle \sf{  \sin  {6}^{ \circ} \sin  {42}^{ \circ}   \sin  {66}^{ \circ}  \sin  {102}^{ \circ} }

 \displaystyle \sf{  =  \frac{1}{4} \times 2  \sin  {6}^{ \circ} \sin  {66}^{ \circ}   \times 2 \sin  {42}^{ \circ}  \sin  {102}^{ \circ}  }

 \displaystyle \sf{  =  \frac{1}{4} \times (\cos  {60}^{ \circ} -  \cos  {72}^{ \circ} )  (\cos  {60}^{ \circ} -  \cos  {144}^{ \circ} ) }

 \displaystyle \sf{  =  \frac{1}{4} \times  \bigg( \frac{1}{2}  -  \frac{ \sqrt{5}  - 1}{4}   \bigg)   \bigg( \frac{1}{2}  +   \cos  {36}^{ \circ}  \bigg) }

 \displaystyle \sf{  =  \frac{1}{4} \times  \bigg( \frac{1}{2}  -  \frac{ \sqrt{5}  - 1}{4}   \bigg)    \bigg( \frac{1}{2}   +  \frac{ \sqrt{5}   +  1}{4}   \bigg)}

 \displaystyle \sf{  =  \frac{1}{4} \times  \bigg(   \frac{ 3 - \sqrt{5}  }{4}   \bigg)    \bigg(  \frac{ 3 + \sqrt{5}  }{4}   \bigg)}

 \displaystyle \sf{  =  \frac{1}{4} \times  \bigg(   \frac{  {3}^{2}  - {(  \sqrt{5} )}^{2}   }{4 \times 4}   \bigg)    }

 \displaystyle \sf{  =  \frac{1}{4} \times  \bigg(   \frac{  9 - 5  }{16}   \bigg)    }

 \displaystyle \sf{  =  \frac{1}{4} \times  \bigg(   \frac{  4  }{16}   \bigg)    }

 \displaystyle \sf{  =  \frac{1}{16} }

This gives  \displaystyle \sf{  k=  \frac{1}{16} }

Thus we have

 \displaystyle \sf{  \frac{1}{2k} }

 \displaystyle \sf{ =   \frac{16}{2} }

 \displaystyle \sf{  = 8}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{sin\,6^\circ\;sin\,42^\circ\;sin\,66^\circ\;sin\,102^\circ=k}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\dfrac{1}{2k}}

\underline{\textbf{Solution:}}

\underline{\textsf{Formula used:}}

\boxed{\mathsf{sin(60^\circ-A)\;sinA\;sin(60^\circ+A)=\dfrac{1}{4}sin\,3A}}

\mathsf{Consider,}

\mathsf{sin\,6^\circ\;sin\,42^\circ\;sin\,66^\circ\;sin\,102^\circ=k}

\mathsf{(sin\,6^\circ\;sin\,66^\circ)(sin\,42^\circ\;sin\,102^\circ)=k}

\textsf{This can be written as,}

\mathsf{\left(\dfrac{sin\,54\;sin\,6^\circ\;sin\,66^\circ}{sin\,54}\right)\left(\dfrac{sin\,54\;sin\,42^\circ\;sin\,102^\circ}{sin\,18}\right)=k}

\mathsf{\left(\dfrac{sin\,54^\circ\;sin\,6^\circ\;sin\,66^\circ}{sin\,54^\circ}\right)\left(\dfrac{sin\,18^\circ\;sin\,42^\circ\;sin\,102^\circ}{sin\,18^\circ}\right)=k}

\mathsf{\left(\dfrac{sin(60^\circ-6^\circ)\;sin\,6^\circ\;sin(60^\circ+6^\circ)}{sin\,54^\circ}\right)\left(\dfrac{sin(60^\circ-42^\circ)\;sin\,42^\circ\;sin(60^\circ+42^\circ)}{sin\,18^\circ}\right)=k}

\mathsf{Using\;the\;above\;formula,}

\mathsf{\left(\dfrac{1}{4}sin\,3(6^\circ){\times}\dfrac{1}{sin\,54^\circ}\right)\left(\dfrac{1}{4}sin\,3(42^\circ){\times}\dfrac{1}{sin\,18^\circ}\right)=k}

\mathsf{\left(\dfrac{1}{4}sin\,18^\circ{\times}\dfrac{1}{sin\,54^\circ}\right)\left(\dfrac{1}{4}sin\,126^\circ{\times}\dfrac{1}{sin\,18^\circ}\right)=k}

\mathsf{\left(\dfrac{1}{4}sin\,18^\circ{\times}\dfrac{1}{sin\,54^\circ}\right)\left(\dfrac{1}{4}sin\,54^\circ{\times}\dfrac{1}{sin\,18^\circ}\right)=k}

\implies\mathsf{\dfrac{1}{4}{\times}\dfrac{1}{4}=k}

\implies\mathsf{k=\dfrac{1}{16}}

\mathsf{Now,}

\mathsf{\dfrac{1}{2k}}

\mathsf{=\dfrac{16}{2}}

\implies\boxed{\mathsf{\dfrac{1}{2k}=8}}

\underline{\textbf{Find more:}}

Prove that cos20.cos40.cos80=1/8

https://brainly.in/question/147501

Similar questions