The value of tan 3A – tan 2A – tan A is equal to
(A) tan 3A tan 2A tan A (B) – tan 3A tan 2A tan A
(C) tan A tan 2A – tan 2A tan 3A – tan 3A tan A (D) None of these
Answers
Answered by
7
Explanation:
We can write
tan(3A) = tan(2A + A)
We have the formula
tan(X + Y) = [ tan(X) + tan(Y) ] / [1 - tan(X).tan(Y) ]
Applying this we get
tan(3A) = [ tan(2A) + tan(A) ] / [1 - tan(2A).tan(A) ]
tan(3A) [ 1 - tan(2A).tan(A) ] = tan(2A) + tan(A)
Solving this we get
tan(3A) - tan(A).tan(2A).tan(3A) = tan(2A) + tan(A)
So,
tan(3A) - tan(2A) - tan(A) = tan(A).tan(2A).tan(3A)
Therefore, option A is correct.
Answered by
0
Answer:
l
(B) – tan 3A tan 2A tan A
Similar questions