Math, asked by jannat38, 1 year ago

the value of [tan30°•sin60°•cosec30°/sec0°•cot60°•cos30°]4 is equal to

Answers

Answered by Anonymous
6

 \frac{ \tan(30) \times  \sin(60) \times  \cosec(30)   }{ \sec(0)  \times  \cot(60) \cos(30)   }  \times 4 \\   =  \frac{ \frac{1}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{2}  \times 2}{1 \times  \frac{1}{ \sqrt{3}  }  \times   \frac{ \sqrt{3} }{2}  }  \times 4

 =  \frac{1}{ \frac{1}{2} }  \times 4 \\  = 2 \times 4 \\  = 8

kalpan46: plz check yhe value of cos 30
jannat38: your answered is wrong
kalpan46: what is cos 30
jannat38: right answer is 8
kalpan46: cos 30
Anonymous: cos 30 is √3/2
Anonymous: and i think it is correct
Answered by atalante
3

Solution:

The value of the given expression is 16

Explanation:

We have to find the value of the expression

\left [\frac{ \tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \csc 30^{\circ}}{\sec 0^{\circ}\cdot \cot 60^{\circ}\cdot \cos 30^{\circ}  }   \right ] ^4

We can evaluate the value of the expression by using the standard value of the given trigonometric function.

\left [\frac{( 1/\sqrt3) \cdot (\sqrt3 /2)\cdot 2}{1\cdot (1/\sqrt3)\cdot (\sqrt3 /2 ) }   \right ] ^4

On simplifying the numerator and denominator, we get

\frac{1}{1/2}\\\\=(2)^4\\\\=16

Similar questions