The value of tan81 - tan63 - tan27 + tan9 is......
(angles are in degrees)
Answers
Answer:
4
Step-by-step explanation:
Tan81 - Tan63 - Tan27 + Tan9
Tan(90 -9) + Tan9 - Tan(90 - 27) - Tan27 (∵ Tan (90 - θ) = Cotθ)
= Cot9 + Tan9 - (Cot27 + Tan27)
= Cos9/Sin9 + Sin9/Cos9 - (Cos27/Sin27 + Sin27/Cos27)
= Cos²9 + Sin²9/Sin9Cos9 - (Cos²27 + Sin²27/Cos27Sin27)
= 1/Sin9Cos9 - 1/Sin27Cos27
= 2/2Sin9Cos9 - 2/2Sin27Cos27
= 2/Sin18 - 2/Sin54
= 2. Sin54 - Sin18/Sin54Sin18
= 2. 2Cos36Sin18/Sin54.Sin18 ( ∵ SInA - SinB = 2Cos(A+B/2)Sin(A-B/2)
= 4. Cos36SIn18/SIn(90-36)Sin18
= 4. Cos36SIn18/Cos36Sin18 (∵Sin (90 - θ) = Cosθ)
= 4.
Answer:
kavin6502
24.10.2019
Math
Secondary School
+10 pts
Answered
The value of tan81 - tan63 - tan27 + tan9 is......
(angles are in degrees)
1
SEE ANSWER
ADD ANSWER
Answers
kavin6502 is waiting for your help.
Add your answer and earn points.
Spiderman2019Maths AryaBhatta
Answer:
4
Step-by-step explanation:
Tan81 - Tan63 - Tan27 + Tan9
Tan(90 -9) + Tan9 - Tan(90 - 27) - Tan27 (∵ Tan (90 - θ) = Cotθ)
= Cot9 + Tan9 - (Cot27 + Tan27)
= Cos9/Sin9 + Sin9/Cos9 - (Cos27/Sin27 + Sin27/Cos27)
= Cos²9 + Sin²9/Sin9Cos9 - (Cos²27 + Sin²27/Cos27Sin27)
= 1/Sin9Cos9 - 1/Sin27Cos27
= 2/2Sin9Cos9 - 2/2Sin27Cos27
= 2/Sin18 - 2/Sin54
= 2. Sin54 - Sin18/Sin54Sin18
= 2. 2Cos36Sin18/Sin54.Sin18 ( ∵ SInA - SinB = 2Cos(A+B/2)Sin(A-B/2)
= 4. Cos36SIn18/SIn(90-36)Sin18
= 4. Cos36SIn18/Cos36Sin18 (∵Sin (90 - θ) = Cosθ)
= 4.