Math, asked by LEGENDVIPUL, 11 months ago

THE VALUE OF THE ABOVE QUESTION IS EQUALS TO?​

Attachments:

Answers

Answered by SparklingBoy
3

Answer:

PROCEDURE

We can solve this question by firstly breaking the numerator in its simplest form.

After breaking we will take three common from each other and then left will be cancelled by the denominator and the final answer came 3 as:-)

We can write

 \sqrt{27}  \: as \: 3 \sqrt{3}  \\ \sqrt{45}\: as \: 3 \sqrt{5} \\ \sqrt{63} \: as \: 3 \sqrt{7}

Now:

 \frac{ \sqrt{27}  +   \sqrt{45}  +  \sqrt{63} }{ \sqrt{3 } +   \sqrt{5}  +  \sqrt{7}  }  \\  =  \frac{3 \sqrt{3}  + 3 \sqrt{5}  + 3 \sqrt{7} }{ \sqrt{3} +  \sqrt{5} +  \sqrt{7}   }  \\  =  \frac{3( \cancel{ \sqrt{3}  + \sqrt{5}   +  \sqrt{7} }}{ \cancel{ \sqrt{ 3} +  \sqrt{5}   +  \sqrt{7} }}  \\  = 3

Answered by aryandalmia0208
0

Answer:

3

Step-by-step explanation:

\sqrt{27} = 3\sqrt{3} ; \sqrt{45} = 3\sqrt{5} ; \sqrt{63} = 3\sqrt{7}

\sqrt{27}+\sqrt{45}+\sqrt{63} = 3(\sqrt{3} + \sqrt{5} + \sqrt{7})

 3(\sqrt{3} + \sqrt{5} + \sqrt{7}) / \sqrt{3} + \sqrt{5} + \sqrt{7} = 3

Please mark Brainliest

Similar questions