Math, asked by ishikachouhan117, 9 months ago

The value of the expression log10(tan6°) + log10(tan12°) + log10(tan18°) + ...+ log10(tan84°) is

Answers

Answered by pulakmath007
1

\displaystyle \sf   log_{10}(tan {6}^{ \circ} )  + log_{10}(tan {12}^{ \circ} )  + log_{10}(tan {18}^{ \circ} )  + ... + log_{10}(tan {84}^{ \circ} )   =  \bf 0

Given :

\displaystyle \sf   log_{10}(tan {6}^{ \circ} )  + log_{10}(tan {12}^{ \circ} )  + log_{10}(tan {18}^{ \circ} )  + ... + log_{10}(tan {84}^{ \circ} )

To find :

The value of the expression

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf   log_{10}(tan {6}^{ \circ} )  + log_{10}(tan {12}^{ \circ} )  + log_{10}(tan {18}^{ \circ} )  + ... + log_{10}(tan {84}^{ \circ} )

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf   log_{10}(tan {6}^{ \circ} )  + log_{10}(tan {12}^{ \circ} )  + log_{10}(tan {18}^{ \circ} )  + ... + log_{10}(tan {84}^{ \circ} )

Rearranging the terms we get

\displaystyle \sf  =   log_{10}(tan {6}^{ \circ} )  + log_{10}(tan {84}^{ \circ} )  + log_{10}(tan {12}^{ \circ} )  +  log_{10}(tan {78}^{ \circ} ) + log_{10}(tan {18}^{ \circ} )  +  log_{10}(tan {72}^{ \circ} ) + ... + log_{10}(tan {42}^{ \circ} )  + log_{10}(tan {48}^{ \circ} )

\displaystyle \sf  =   log_{10}(tan {6}^{ \circ}  \times tan {84}^{ \circ} )  + log_{10}(tan {12}^{ \circ} \times tan {78}^{ \circ} ) + log_{10}(tan {18}^{ \circ}  \times tan {72}^{ \circ} ) + ... + log_{10}(tan {42}^{ \circ}  \times tan {48}^{ \circ} ) \:  \:  \: \bigg[ \:  \because \: log(a) +  log(b)  =  log(ab)   \bigg]

\displaystyle \sf  =   log_{10}(tan {6}^{ \circ}  \times tan [{90}^{ \circ} -{6}^{ \circ}  ])  + log_{10}(tan {12}^{ \circ} \times tan [{90}^{ \circ} -{12}^{ \circ}  ]) + log_{10}(tan {18}^{ \circ}  \times tan [{90}^{ \circ} -{18}^{ \circ}  ])+ ... + log_{10}(tan {42}^{ \circ}  \times tan [{90}^{ \circ} -{42}^{ \circ}  ])

\displaystyle \sf   =  log_{10}( tan {6}^{ \circ}  \times cot {6}^{ \circ}) +log_{10}( tan {12}^{ \circ}  \times cot {12}^{ \circ})  + log_{10}( tan {18}^{ \circ}  \times cot {18}^{ \circ}) + ... + log_{10}( tan {42}^{ \circ}  \times cot {42}^{ \circ})

\displaystyle \sf  =   log_{10}(1 )  + log_{10}(1 ) + log_{10}(1 ) + ... + log_{10}(1 ) \:  \:  \: \bigg[ \:  \because \: tan  \theta\times cot  \theta = 1\bigg]

 = 0 + 0 + 0 + ... + 0

 = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

#SPJ3

Similar questions