Math, asked by jeet321964, 1 year ago

The value of this is sin(2sin^-1(0.6))

Answers

Answered by parmesanchilliwack
98

Answer:

0.96

Step-by-step explanation:

Given,

sin(2sin^{-1}(0.6))

Let,

sin^{-1}(0.6)=A -------(1)

\implies sin A = 0.6

\implies \sqrt{1-cos^2A} = 0.6    ( Since, sin² A + cos² A = 1 ⇒ sin² A = 1 - cos² A ⇒ sin A = √(1-cos² A) )

1-cos^2A = 0.36

cos^2A= 1-0.36 = 0.64

\implies cos A = 0.8

We know that,

sin 2A = 2 sin A cos A = 2\times 0.6\times 0.8=0.96

From equation (1),

\implies sin 2[sin^{-1}(0.6)]=0.96

Answered by Teluguwala
4

 \qquad { \sin }^{ - 1} (0.8) =  \theta

 \displaystyle \qquad { \sin } \: \theta =  \frac{8}{10}

\displaystyle \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{4}{5}

 \implies \:    \: \therefore \: \:  \:   = \sin(2 \theta)

 \qquad \qquad = 2  \sin \theta\cos \theta

 \displaystyle \qquad \qquad = 2   \times  \frac{4}{5} \times  \frac{3}{5}

 \displaystyle \qquad \qquad =  \frac{24}{25} \times  \frac{4}{4}

 \displaystyle \qquad \qquad =   \frac{96}{100}

\displaystyle \qquad \qquad \bf =   0.96

 \:

Similar questions