Math, asked by SharmaShivam, 11 months ago

The value of x and y which satisfies the equation :
\frac{\left(1+i\right)^2}{\left(1-i\right)^2}+\frac{1}{x+iy}=1+i is -​

Answers

Answered by skh2
66

We have from Question :-

 \frac{ {(1 + i)}^{2} }{ {(1 - i)}^{2} } +  \frac{1}{x + iy} = 1 + i \\  \\  \\  \\ \frac{1 +  {i}^{2} + 2i}{1 +  {i}^{2} - 2i} +  \frac{1}{x + iy} = 1 + i \\  \\  \\ \\ \frac{1 - 1 + 2i}{1 - 1 - 2i} +  \frac{1}{x + iy} = 1 + i \\  \\  \\  \\ - 1 +  \frac{1}{x + iy} = 1 + i \\  \\  \\  \\ \frac{1}{x + iy} = 2 + i \\  \\  \\ \implies x + iy =  \frac{1}{2 + i} \\  \\  \\  \\x + iy =  \frac{2 - i}{(2 + i)(2 - i)} \\  \\  \\x + iy =  \frac{2 - i}{4 -  {i}^{2} } \\  \\  \\x + iy =  \frac{2 - i}{4 - ( - 1)} \\  \\  \\x + iy =  \frac{2 - i}{5} \\  \\  \\ x + iy =  \frac{2}{5} +  \frac{( - 1)}{5}i \\  \\  \\  \\on \: comparing \: both \: sides \:  \\  \\  \\x =  \frac{2}{5} \\  \\  \\y =  \frac{ - 1}{5}

\rule{200}{2}

Hence,

x = 2/5

y = - 1/5

\rule{200}{2}


Anonymous: As usual rocked it bro :)
2004mainak04: plz tell me in what format is this answer
skh2: Thanks @supriyaH
Answered by Anonymous
4

Answer:

Step-by-step explanation:

Complex numbers:-

Given an equation,in which we have to find x,y

Applying (a+b)^2 ,(a-b)^2 formula,we get:-

1/(x+iy)=2+i

Taking reciprocal,and multiplying by 2-i at both numerator and denominator,we get:-

x=2/5,y=-1/5

Attachments:
Similar questions