Math, asked by rahuldaripa98, 7 months ago

The value of x in log (9/63) = 1/2 is:
2/49
81/240
1/49
1/3​

Answers

Answered by dheerajkumar23
7

Answer:

answer is 1/49

x^1/2=9/63

x=(9/63)^2

x=1/49

Attachments:
Answered by pulakmath007
0

SOLUTION

GIVEN

\displaystyle \sf{  log_{x} \bigg(  \frac{9}{63} \bigg) =  \frac{1}{2}    }

TO DETERMINE

The value of x

FORMULA TO BE IMPLEMENTED

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

EVALUATION

\displaystyle \sf{  log_{x} \bigg(  \frac{9}{63} \bigg) =  \frac{1}{2}    }

\displaystyle \sf{  \implies log_{x} \bigg(  \frac{1}{7} \bigg) =  \frac{1}{2}    }

\displaystyle \sf{  \implies  log_{x}(1)  - log_{x}(7)  =   \frac{1}{2}    }

\displaystyle \sf{  \implies  0  - log_{x}(7)  =   \frac{1}{2}    }

\displaystyle \sf{  \implies   log_{x}(7)  =   -  \frac{1}{2}    }

\displaystyle \sf{  \implies    {x}^{ -  \frac{1}{2} }   = 7}

\displaystyle \sf{  \implies    {x}^{ -1 }   = 49}

\displaystyle \sf{  \implies     \frac{1}{x}    = 49}

\displaystyle \sf{  \implies  x =    \frac{1}{49} }

FINAL ANSWER

\displaystyle \sf{    x =    \frac{1}{49} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions