Math, asked by pranpara, 11 months ago

the value of [{x/y}^(√79+√77]^(√79-√77)​

Answers

Answered by harendrachoubay
0

The value of (\frac{x}{y} )^{\sqrt{79} +\sqrt{77}^{\sqrt{79} - \sqrt{77}} is (\frac{x}{y} )^{2}.

Step-by-step explanation:

We have,

(\frac{x}{y} )^{\sqrt{79} +\sqrt{77}^{\sqrt{79} - \sqrt{77}}  .... (1)

Let a = \dsqrt{79} - \dsqrt{77} and

a = \dsqrt{79} + \dsqrt{77}

Equation (1) can be written as,

(\dfrac{x}{y})^{a} ^{b}                                                       ...... (2)

= (\frac{x}{y} )^{ab}

[ ∵ (a^{m} )^{n} = a^{mn} ]

ab =  \dsqrt{79} - \dsqrt{77} · \dsqrt{79} + \dsqrt{77}

= 79 - 77 = 2

Now, (2) becomes

= (\frac{x}{y} )^{2}

Hence, the value of (\frac{x}{y} )^{\sqrt{79} +\sqrt{77}^{\sqrt{79} - \sqrt{77}} is (\frac{x}{y} )^{2}.

Similar questions