Math, asked by sushanttiparse20588, 8 months ago

The values of k for which the distance between the points A(k,2) and B(3, 4) is √8.

Answers

Answered by amansharma264
5

 \bf \to \:  \green{{ \underline{given \div }}}

 \sf \to \: distance \: between \: the \: point \: a(k \: , \: 2) \: and \: b \: (3 \: , \: 4) \: is \:  \sqrt{8}

 \bf \to \:  \orange{{ \underline{to \: find \: the \: value \: of \: k}}}

 \bf \to \:  \blue{{ \underline{step \:  - \: by \:  -  \: step \:  -  \: explanation }}}

 \sf \to \: points \: are \:  \: a \: (k \: , \: 2) \: and \: b(3 \: , \: 4) \: is \:  \sqrt{8} \\  \\  \sf \to \: by \: using \: the \: distance \: formula \\  \\  \sf \to \: d \:  =  \sqrt{( x_{1} \:  -  \:  x_{2}) {}^{2}  +  \: ( y_{1} \:  -  \:  y_{2}) {}^{2}  }  \\  \\  \sf \to \:  \sqrt{8}   =  \sqrt{(k - 3) {}^{2} + (2 - 4) {}^{2}  } \\  \\  \sf \to \: 8 = (k - 3) {}^{2}   + ( - 2) {}^{2}  \\  \\ \sf \to \: 8 =  {k}^{2} + 9 - 6k \:  + 4 \\  \\  \sf \to \:  {k}^{2} - 6k + 13  - 8 = 0 \\  \\  \sf \to \:  {k}^{2}  - 6k \:  + 5 = 0 \\  \\  \sf \to \:   {k}^{2} - 5k - k \:  + 5 = 0 \\  \\  \sf \to \: k \: (k - 5) - 1(k - 5) = 0 \\  \\  \sf \to \: (k - 1)(k - 5) = 0 \\  \\  \sf \to \: k \:  = 1 \: and \: k \:  = 5

Answered by Anonymous
5

Given ,

The distance between the points A(k,2) and B(3, 4) is √8 units

We know that , the distance b/w Two points is given by

 \boxed{ \tt{Distance =  \sqrt{ {( x_{2} -  x_{1})}^{2} +  {( y_{2} -  y_{1})}^{2}  } }}

Thus ,

 \tt \mapsto \sqrt{8}  =  \sqrt{ {(3 - k)}^{2}  +  {(4 - 2)}^{2} }

Squaring on both sides , we get

 \tt \mapsto 8 =  {(3)}^{2}  +  {(k)}^{2}  - 2(3)(k) +  {(2)}^{2}

 \tt \mapsto8 = 9 +  {(k)}^{2}  - 6k + 4

 \tt \mapsto8 =  {(k)}^{2}  - 6k + 13

 \tt \mapsto {(k)}^{2}  - 6k + 5 = 0

 \tt \mapsto {(k)}^{2}  - 5k - k + 5 = 0

 \tt \mapsto k(k - 5) - 1(k - 5) = 0

 \tt \mapsto (k - 1)(k - 5) = 0

 \tt \mapsto k = 1 \:  \: or \:  \: k = 5

The value of k will be 1 or 5

Similar questions