Math, asked by srigokulakannangetma, 1 month ago

the variance of 15 observation is 4 if eacg observation is increased by 9 the variance of theresulting observation mcq​

Answers

Answered by shadowsabers03
4

Given that the variance of 15 observations is 4, i.e.,

\longrightarrow\sigma^2=4

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2-\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2=4

Note that the variance can be defined as square of mean of observations subtracted from mean of square of observations. \displaystyle\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2 is mean of squares and \displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2 is square of mean.

Now each observation is increased by 9, i.e.,

  • y_i=x_i+9,\quad i\in\mathbb{Z},\quad\!\!1\leq i\leq 15.

Then, mean of squares,

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i+9)^2

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}\left((x_i)^2+18x_i+81)

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2+\dfrac{1}{15}\sum_{i=1}^{15}18x_i+\dfrac{1}{15}\sum_{i=1}^{15}81

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2+\dfrac{18}{15}\sum_{i=1}^{15}x_i+\dfrac{1}{15}\cdot15\cdot81

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2+\dfrac{6}{5}\sum_{i=1}^{15}x_i+81

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2-\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2=\dfrac{6}{5}\sum_{i=1}^{15}x_i+81\quad\quad\dots(1)

And, square of mean,

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}(x_i+9)\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i+\dfrac{1}{15}\sum_{i=1}^{15}9\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i+\dfrac{1}{15}\cdot15\cdot9\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i+9\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2+\dfrac{18}{15}\sum_{i=1}^{15}x_i+81

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2-\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2=\dfrac{6}{5}\sum_{i=1}^{15}x_i+81\quad\quad\dots(2)

Comparing (1) and (2) where the RHS are same,

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2-\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2=\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2-\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2-\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2-\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2

Here the LHS is the variance of new observations and RHS is the variance is the old observations, i.e.,

\displaystyle\longrightarrow\underline{\underline{(\sigma')^2=\sigma^2}}

That is, the variance and standard deviation never change whenever each observation is increased or decreased by a constant.

Hence the answer to the question is 4.

Answered by Anonymous
1

\huge\bf\fbox\red{Answer:-}

Given that the variance of 15 observations is 4, i.e.,

\longrightarrow\sigma^2=4

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2-\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2=4

Note that the variance can be defined as square of mean of observations subtracted from mean of square of observations. \displaystyle\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2is mean of squares and \displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2

is square of mean.

Now each observation is increased by 9, i.e.,

y_i=x_i+9,\quad i\in\mathbb{Z},\quad\!\!1\leq i\leq 15.

Then, mean of squares,

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i+9)^2

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}\left((x_i)^2+18x_i+81)

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2+\dfrac{1}{15}\sum_{i=1}^{15}18x_i+\dfrac{1}{15}\sum_{i=1}^{15}81

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2+\dfrac{18}{15}\sum_{i=1}^{15}x_i+\dfrac{1}{15}\cdot15\cdot81

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2+\dfrac{6}{5}\sum_{i=1}^{15}x_i+81

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2-\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2=\dfrac{6}{5}\sum_{i=1}^{15}x_i+81\quad\quad\dots(1)

And, square of mean,

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}(x_i+9)\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i+\dfrac{1}{15}\sum_{i=1}^{15}9\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i+\dfrac{1}{15}\cdot15\cdot9\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i+9\right)^2

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2+\dfrac{18}{15}\sum_{i=1}^{15}x_i+81⟶( ∑)

\displaystyle\longrightarrow\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2-\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2=\dfrac{6}{5}\sum_{i=1}^{15}x_i+81\quad\quad\dots(2)

Comparing (1) and (2) where the RHS are same,

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2-\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2=\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2-\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2

\displaystyle\longrightarrow\dfrac{1}{15}\sum_{i=1}^{15}(y_i)^2-\left(\dfrac{1}{15}\sum_{i=1}^{15}y_i\right)^2=\dfrac{1}{15}\sum_{i=1}^{15}(x_i)^2-\displaystyle\left(\dfrac{1}{15}\sum_{i=1}^{15}x_i\right)^2

Here the LHS is the variance of new observations and RHS is the variance is the old observations, i.e.,

\displaystyle\longrightarrow\underline{\underline{(\sigma')^2=\sigma^2}}

That is, the variance and standard deviation never change whenever each observation is increased or decreased by a constant.

Hence the answer to the question is 4.

Similar questions