Physics, asked by sahzamraza21, 9 months ago

the vector OA where O is origin is given by OA= 2icap-2jcap now its rotated by 45 degree anticlockwise

Answers

Answered by subhamrout2019
1

Answer:

pls mark as brainlist answer

Attachments:
Answered by shadowsabers03
5

Given vector is,

\longrightarrow \vec{\sf{OA}}=\sf{2\hat i-2\hat j}

First let us write the vector in the form \sf{r\left(\cos\theta\,\hat i+\sin\theta\,\hat j\right).}

\longrightarrow \vec{\sf{OA}}=\sf{2\left(\hat i-\hat j\right)}

\longrightarrow \vec{\sf{OA}}=\sf{2\sqrt2\left(\dfrac{1}{\sqrt2}\ \hat i-\dfrac{1}{\sqrt2}\ \hat j\right)}

\longrightarrow \vec{\sf{OA}}=\sf{2\sqrt2\left(\cos45^o\ \hat i-\sin45^o\ \hat j\right)}

\longrightarrow \vec{\sf{OA}}=\sf{2\sqrt2\left(\cos(-45^o)\ \hat i+\sin(-45^o)\ \hat j\right)}

Now it is in the form \sf{r\left(\cos\theta\,\hat i+\sin\theta\,\hat j\right).}

This means our vector has magnitude \sf{2\sqrt2} and is at an angle \sf{45^o} below positive x axis, i.e., in 4th quadrant.

If we rotate this vector by \sf{45^o} anticlockwise about O, the angle gets added by this much angle. But the magnitude remains unchanged.

Hence the new vector is,

\longrightarrow \vec{\sf{OA'}}=\sf{2\sqrt2\left(\cos\left(-45^o+45^o\right)\ \hat i+\sin\left(-45^o+45^o\right)\ \hat j\right)}

\longrightarrow \vec{\sf{OA'}}=\sf{2\sqrt2\left(\cos0^o\ \hat i+\sin0^o\ \hat j\right)}

\longrightarrow\underline{\underline{\vec{\sf{OA'}}=\sf{2\sqrt2\ \hat i}}}

Similar questions