Physics, asked by vaibhav1673, 1 year ago

The vectors A= 6i+9j-3k and

B=2i+3j-k

a) Parallel b) anti-parallel c)

Perpendicular d) identical​

Answers

Answered by TheOxford
4
\sf{ \overrightarrow{A} = 6 \hat{i} + 9 \hat{j} - 3 \hat{k}}

\sf{\overrightarrow{B} = 2 \hat{i} + 3 \hat{j} - \hat{k}}




<b>Step I :</b> <u>Find the magnitude of both the vectors.</u>

|\sf{\overrightarrow{A}}| \sf{= {\sqrt{(6)^2 + (9)^2 + (- 3)^2}} }

\sf{A = {\sqrt{36 + 81 + 9}}}

\sf{A = {\sqrt{126}} = 3 {\sqrt{14}}}

|\sf{\overrightarrow{B}}| \sf{= {\sqrt{(2)^2 + (3)^2 + (- 1)^2}} }

\sf{B = {\sqrt{4 + 9 + 1}}}

\sf{B = {\sqrt{14}}}




<b>Step II :</b> <u>Determine the dot product of both vectors.</u>

\sf{\overrightarrow{A} . \overrightarrow{B} = (6)(2) + (9)(3) + (- 3)(- 1)}

= 12 + 27 + 3

= 42




<b>Step III :</b> <u>Determine the angle</u>

As we know that,

\sf{\overrightarrow{A} . \overrightarrow{B} = AB cos \theta}

\succ 42 = (3√14)(√14) cos θ

\succ 42 = 3 * 14 cos θ

\succ cos θ = 1

\succ cos θ = cos 0°

On comparing both sides, we get

θ = 0°

This shows that both the vectors are parallel.




Hence, <u>the correct option is</u> <I><u><b>  a) Parallel.</I></b></u>
Answered by sprao534
0

Please see the attachment

Attachments:
Similar questions