Physics, asked by abdevillierssenapati, 10 months ago

The velocity of a particle depends upon t according to the equation v=a+bt+c/(d+t). Write the dimensions of a,b,c and d

Answers

Answered by Anonymous
8

GiveN :

  • v = (a + bt + c)/d + t

To FinD :

  • Dimensions of a,b,c and d

SolutioN :

We know that :

\boxed{\sf{v \: = \: [LT^{-1}]}}

\rule{150}{0.5}

By the equation :

\rightarrow \sf{v \: = \: a} \\ \\ \rightarrow \sf{a \: = \: [M^0 LT^{-1}]}

  • Dimension of a is \sf{[M^0 LT^{-1}]}

\rule{150}{0.5}

\rightarrow \sf{v \: = \: bt} \\ \\ \rightarrow \sf{[LT^{-1}] \: = \: [T] b} \\ \\ \rightarrow \sf{b \: = \: \dfrac{[LT^{-1}]}{[T]}} \\ \\ \rightarrow \sf{b \: = \: [LT^{-2}]}

  • Dimension of b is \sf{[M^0LT^{-2}]}

\rule{150}{0.5}

\rightarrow \sf{v \: = \: c} \\ \\ \rightarrow \sf{c \: = \: [LT^{-1}]}

  • Dimension of c is \sf{[LT^{-1}]}

\rule{150}{0.5}

As, we know that only two similar quantities can be added. And we are given, d + t

  • So, Dimension to d is \sf{[M^0 L^0 T]}
Similar questions