Math, asked by rishuranjan64, 9 months ago

The vertices of a point are A(1,2);B(-3,-4);&C(5,-6) .Find the CircumCentre.​

Answers

Answered by Anonymous
25

\huge\bf{\red{\overbrace{\underbrace{\purple{Given:}}}}}

★Vertices of a ∆ are

•A(1, 2)

•B(-3, -4) &

•C(5, -6)

\huge\bf{\red{\overbrace{\underbrace{\purple{To\:\:Find:}}}}}

★The coordinates of the CircumCentre of the ∆ .

\huge\bf{\red {\overbrace{\underbrace{\purple{Concept\:\:Used:}}}}}

★We will use 'Distance formula '.

\huge\bf{\red {\overbrace{\underbrace{\purple{Answer:}}}}}

We have,

•A(1, 2)

•B(-3, -4) &

•C(5, -6)

Let the point S(x, y) be the CircumCentre of the ∆.

So, SA = SB = SC

. °. SC^{2}=SB^{2}=SC^{2}

Now, taking SA=SB,

\implies SA=SB

\implies SA^{2}=SB^{2}

\implies(x-1)^{2}+(y-2) ^{2}=(x-3) ^{2}+(y+4) ^{2}

\implies x^{2}-2x+1+y^{2}+4-4y=x^{2}-6x+9+y^{2}+8y+16

\large\blue{\boxed{\red{(a+b) ^{2}=a^{2}+b^{2}+2ab}}}

\large\blue{\boxed{\red{(a-b) ^{2}=a^{2}+b^{2}-2ab}}}

\implies\cancel{x^{2}}-2x+1+\cancel{y^{2}}+4-4y=\cancel{x^{2}}-6x+9+\cancel{y^{2}}+8y+16

\implies -2x-4y+5=-6x+8y+25

\implies 6x-2x-8y-4y=20

\implies 4x-12y=20

\implies 4(x-3y) =20

\implies x-3y=\dfrac{20}{4}

\implies x-3y=\dfrac{\cancel{20}^{5}}{\cancel{4}}

{\underline{\boxed{\red{.\degree. (x-3y) =5}}}}...........(1)

______________________________________

Now, again taking SB=SC,

\implies SA=SC

\implies SA^{2}=SB^{2}

\implies  (x-3) ^{2}+(y+4) ^{2}=(x-5) ^{2}+(y-6) ^{2}

\implies x^{2}+9-6x+y^{2}+16+8y=x^{2}+25-10x+y^{2}+36+12y

\footnotesize{\implies \cancel{x^{2}}+9-6x+\cancel{y^{2}}+16+8y=\cancel{x^{2}}+25-10x+\cancel{y^{2}}+36+12y}

\implies 25+8y-6x=25+12y-10x+36

\implies  \cancel{25}+8y-6x=\cancel{25}+12y-10x+36

\implies 10x-6x+8y-12y=36

\implies 4x-4y=36

\implies 4(x-y) =36

\implies (x-y) =\dfrac{36}{4}

\implies  (x-y) =\dfrac{\cancel{36}^{9}}{\cancel{4}}

{\underline{\boxed{\purple{.\degree. x-y=9}}}}.........(2)

______________________________________

Now (2) -(1), we have,

\implies x-y-(x-3y)=9-5

\implies x-y-x+3y=4

\implies 2y=4

\implies y =\dfrac{4}{2}

\implies y =\dfrac{\cancel{4}^{2}}{\cancel{2}}

{\underline{\boxed{\orange{.\degree. y=2}}}}

Putting it in (2)

\implies x -2=9

\implies x=9+2

{\underline{\boxed{\blue{.\degree. x =11}}}}

______________________________________

\Large{Answer}\begin{cases} \longrightarrow x=11\\\longrightarrow y=2\end{cases}

Therefore the coordinate of point of CircumCentre is (11, 2).

<marquee scrollamount="1300">♥Answer by Rishabh♥</marquee>

Attachments:
Similar questions