Math, asked by navyayogesh, 7 months ago

The vertices of a Triangle ABC , right angled at B , are A(-2,2) B(2,-2) and C(k,2) find the value of k .

Answers

Answered by Bidikha
1

Question -

The vertices of a triangle ABC, right angled at B, are A(-2,2) B(2,-2) and C(k, 2) find the value of k

Solution -

We know that,

distance \: formula =  \sqrt{( x_{2} -  x_{1}) {}^{2} + ( y_{2} -  y_{1} ) {}^{2}   }

AB =  \sqrt{( x_{2}  -  x_{1}) {}^{2}   + ( y_{2} -  y_{1}) {}^{2}   }

AB =  \sqrt{( {2 + 2)}^{2}  +  {( - 2 - 2)}^{2} }

Squaring both sides,

 {AB }^{2}  =  {(4)}^{2}  +  {( - 4)}^{2}

 {AB }^{2}  = 16 + 16

 {AB }^{2}  = 32

And,

BC =  \sqrt{( x_{2} -  x_{1}) {}^{2} + ( y_{2} -  y_{2} ) {}^{2}    }

BC =  \sqrt{( {k - 2)}^{2}  + (2 + 2) {}^{2} }

Squaring both sides,

 {BC }^{2}  =  {(k - 2)}^{2}  + 16

And,

AC =  \sqrt{( x_{2} -  x_{1}) {}^{2}  + ( y_{2} -  y_{1} {}^{2})  }

AC =  \sqrt{(k + 2) {}^{2} + (2 - 2) {}^{2}  }

Squaring both sides,

AC {}^{2}  =  {(k + 2)}^{2}

Now,

By applying Pythagoras theorem in right triangle ABC we will get -

h²= b²+p²

AC² = BC² + AB²

By putting the values we will get -

 {(k + 2)}^{2}  =  {(k - 2)}^{2}  + 16 + 32

 {k}^{2}  + 4 + 4k =  {k}^{2}  + 4 - 4k + 48

4k + 4k = 48

8k = 48

k =  \frac{48}{8}

k = 6

Therefore the value of k is 6

Attachments:
Similar questions