Math, asked by sg386844, 6 months ago

The vertices of a triangle are A(-5, 3), B(P,-1) and C(6.9) Find the values of P and q. If the centroid of the AABC is the point

(1, -1).​

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) The vertices of a triangle are A(-5,-3) ,B(P,-1) and C(6,9).Find the value of P and Q, If the centroid of the ABC is the point (-1,1) .

\LARGE {\underline {\red {\sf{Required \: Answer :}}}}

 \:  \:  \bigstar \bf{by \: using \:centroid\: method}

\bullet\displaystyle\bf{x=\dfrac{x_1+x_2+x_3}{3} \: and \: y=\dfrac{y_1+y_2+y_3}{3}}

\boxed{\sf{Given\: values }}

 \:  \bullet \bf{x =  - 1 \: and \: y = 1}

\bullet \bf{x_1=-5 , x_2=P ,x_3=6}

\bullet \bf{y_1=-3,y_2=-1 and y_3=9}

  \\ \implies  \bf{substitute \: the \: given \: values}

 \:  \implies \displaystyle \sf{x =  \frac{x1 + x2 + x3}{3} }

 \:  \implies \displaystyle \sf{ - 1 =  \frac{5 + p + 6}{3} }

 \:  \:  \implies \displaystyle \sf{ - 3 = 11 + p}

 \:  \implies \displaystyle \sf{ - 3 - 11 - p = 0}

 \:  \implies \displaystyle  \sf{p = 14}

 \:   \bigstar \underline{\boxed{ \bf{the \: value \: of \: p =  14}}}

Similar questions