Math, asked by yashkumar2445, 1 year ago

The volume and whole surface area of a cylindrical solid of radius 'r' units are v and s respectively if height of cylinder is i unit .then v/s =

Attachments:

Answers

Answered by 99038sristika
9

Answer:A. 1/2(1-1/r+1)


Step-by-step explanation:since...

V/S = πrsquare h/2πr(h+r)

=rh/2(h+r)

=r/2r+2 ( since : h=1)


while, 1/2(1-1/r+1)

=1/2- 1/2r+2

= 2r+2-2/4r+4

=2r/4r+4

= r/2r+2

hence both of then ar equal.so I hope this helps u..




Answered by abhijattiwari1215
0

Answer:

The ratio of V/S is ½ ( 1 - 1/(1+r) )..

Step-by-step explanation:

Given that :

  • radius of cylinder = r
  • height of cylinder = h =1
  • Volume of cylinder = V
  • Total Surface Area of cylinder = S

To find :

  • ratio of V/S

Solution :

  • The volume of cylinder whose radius is r and height is h, is given by

 V=  \pi{r}^{2} h

  • Total Surface Area of cylinder is

S =2 \pi \: r( h+ r)

  • The ratio of V/S is

 \frac{V}{S}  =  \frac{\pi {r}^{2}h }{2\pi \: r(h + r)}  \\  =  \frac{rh}{2(h + r)}

  • Putting h = 1 in above equation, we get

V/S =  \frac{r}{2(1 + r)}  \\  =  \frac{(1 + r)- 1}{2(1 + r)}  \\  =  \frac{1}{2} (1 -  \frac{1}{1  +  r} )

  • Hence, ratio of V/S is ½ ( 1 - 1/(1+r) ) .

Similar questions