Math, asked by aayushpras119, 1 day ago

The volume of a metallic cylindrical pipe is 748 cm. Its length is 14 cm and its external radius is 9 cm. Find its thickness.​

Answers

Answered by Zackary
42

\huge\textbf{Question:-}

Q.The volume of a metallic cylindrical pipe is 748 cm. Its length is 14 cm and its external radius is 9 cm. Find its thickness.

\textbf{Answer:-}

GIVEN

  • The volume of a metallic cylindrical pipe is 748 cm³
  • length is 14 cm
  • radius is 9 cm

REQUIRED TO FIND

  • Find its thickness.

SOLUTION

volume of cylinder = volume of metal used

  • π ( R² - r² ) h = 748cm³

 \frac{22}{ \cancel7} ( {9}^{2}  -  {r}^{2} ) \cancel14 \:  = 748 \\ 81 -  {r}^{2}  =  \frac{748}{22 \times 2}  \\ 81 -  {r}^{2}  = 17 \\ 81 - 17 =  {r}^{2}  \\  {r }^{2}  = 64 \\ r =  \sqrt{64 }  \\ r = 8

so, r = 8

Thickness of pipe = R - r

  • 9 - 8 = 1

Therefore the thickness of metal pipe is 1cm

:) !!

Answered by Anonymous
17

Answer:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){6}}\multiput(1,0)(2,0){2}{\line(0,1){6}}\multiput(0,0)(0,6){2}{\qbezier(0,0)(2,-0.6)(4,0)}\multiput(0,0)(0,6){2}{\qbezier(0,0)(2,0.6)(4,0)}\multiput(1,0)(0,6){2}{\qbezier(0,0)(1,-0.2)(2,0)}\multiput(1,0)(0,6){2}{\qbezier(0,0)(1,0.2)(2,0)}\multiput(2,0.07)(0,0.3){20}{\line(0,1){0.2}}\multiput(2,4)(0.3,0){7}{\line(1,0){0.2}}\multiput(2,2)(-0.27,0){4}{\line(-1,0){0.2}}\put(1.4,1.5){\bf{8\ cm}}\put(3.35,3.45){\bf{9\ cm}}\put(1.4,3){\bf{14\ cm}}\end{picture}

Given :

★ The volume of a metallic cylindrical pipe is 748 cm.

★ Length of metallic cylindrical pipe is 14 cm.

★ External radius of cylindrical pipe is 9 cm.

To Find :

★ Internal radius of cylindrical pipe is 8 cm.

★ Thickness of cylindrical pipe.

Using Formulas :

★ Volume of cylinder = πR²h  - πr²h

★ Thickness = External radius - Internal radius

Solution :

Here we have given that volume of cylindrical pipe is 747 cm, lenght of cylindrical pipe is 14 cm and external radius is 9 cm. So, finding the Internal radius.

{\implies{Volume\:of\:cylinder = \pi{R}^{2}h -\pi{r}^{2} h}}

Substituting all all the values in the formual.

  • \bull Volume of Cylinder = 748
  • \bull External radius = 9 cm
  • \bull Height of radius = 14 cm

\begin{gathered}\implies{748=\bigg(\dfrac{22}{7} \times {(9)}^{2}\times 14\bigg) - \bigg(\dfrac{22}{7} \times {(r)}^{2} \times 14\big)}\\\\\implies{748 = \bigg(\dfrac{22}{\cancel{7}} \times (9 \times 9) \times \cancel{14}\bigg) -   \bigg(\dfrac{22}{\cancel{7}} \times {(r)}^{2} \times {\cancel{14}} \bigg)} \\  \\ \implies{748 = \bigg(22 \times 9 \times 9\times 2\bigg) - \bigg(22 \times (r)^2 \times 2\bigg)} \\  \\ \implies{748 =44 \times 81- 44r^2}\\\\\implies{748 =44(81- r^2)}\\\\\implies{(81- r^2) =  \dfrac{748}{44}}\\\\\implies{(81- {r}^{2}) = \cancel{\dfrac{748}{44}}}\\\\\implies{(81- r^2) =  17}\\\\\implies{r^2 = - 17 + 84}\\\\\implies{r^2= 64}\\\\\implies{r= \sqrt{64}}\\\\\implies{r= 8 \: cm} \end{gathered}

Hence, the Internal radius is 8 cm.

\rule{190}{1}

Now, we know the External radius and Internal radius. So finding the thickness of metallic cylindrical pipe :

 \begin{gathered}  \quad\Rightarrow{Thickness = External_{(radius)} - Internal_{(radius)}} \\  \\ \quad\Rightarrow{Thickness = 9 - 8} \\  \\ \quad\Rightarrow{Thickness = 1 \: cm} \end{gathered}

Hence, the thickness is 1 cm.

\rule{190}{1}

#Learn More :

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}\end{gathered}\end{gathered}\end{gathered}

\rule{220pt}{4pt}

Similar questions