Math, asked by arvind1819, 11 months ago

the volume of cone is 616 cm3 and height is 21cm find its radius and c.s.a​

Answers

Answered by amitkumar44481
2

 \bold{Given:-} \begin{cases} \sf{   \red{\star \:  }V_{Cone}=616 \:{ Cm.  }^{3} }  \\ \sf{ \red \star \:  height = 21 \: Cm.}   \\ \sf{  \red \star  \: To \:  Find:-}  \\ \sf{ \red \star \: r = \: ?}  \\ \sf{ \red \star \: C.S.A = \: ?} \end{cases}

 \\ \\ \bold  \red\star  \: \underline{Solution:-}

 \:  \:  \:  \:  \:    { \purple{\large\boxed{V_{Cone} =  \frac{1}{3}  \pi {r}^{2}h. }}}\\  \\  \implies   \: 616 =  \frac{1}{3}  \times  \frac{22}{7}  \times  {r}^{2}  \times 21. \\  \\  \implies \: 616 =  \frac{1}{3}  \times  \frac{22 {r}^{2} }{ \cancel7} \times \cancel {21}. \\  \\  \implies \: 616 =  \frac{1}{ \cancel3}  \times  \cancel{3} \times  22{r}^{2} . \\  \\  \implies \:  \frac{ \cancel{616}}{ \cancel{22}} =  {r}^{2} . \\  \\  \implies \: 28 =  {r}^{2} . \\  \\  \implies \: r = 2 \sqrt{7} \\ \\ .

_____________________________________

\bold  \red\star  \: \underline{For  \: Slant \:  Height (l)}

 {l}^{2}  =  {r}^{2}  +  {h}^{2} . \\  \\ l =  \sqrt{ {r}^{2} +  {h}^{2}  } . \\  \\   \:  \: =  \sqrt{{( 2\sqrt{7})  }^{2}  + {(21 )}^{2} } . \\  \\   \:  \: =  \sqrt{28 + 441}. \\  \\   \:  \:  =  \sqrt{469}  \: Cm. \\ \\

______________________________________

\bold  \red\star  \: \underline{Curved  \: Surface  \: Area  \: (C.S.A)}

 C.S.A =  \pi rl \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: =  \frac{22}{ \cancel7}  \times 2 \sqrt{ 7}  \times  \cancel {7.67}. \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =22 \times 2 \sqrt{7}  \times 0.67. \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 77.8272 \: Cm. \\ \\

_________________________________________

 \bold  \red\star  \: \underline{Some  \: Information:- }\\  \\  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \red{V_{Cone}  =  \frac{1}{3}   \pi rl.}\\  \\  \red{Slant  \: Height = {r}^{2}   +  {h}^{2} . }\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: { \red{\sqrt{7}  = 2.645751(Approximately.)} }\\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{  \sqrt{469}  = 7.67(Approximately.)}\\ \\

 \red {\huge {\boxed{keep \:  \: smile: )}}}

Similar questions