Math, asked by jeevan4464, 10 months ago

The volume of cone whose slant height is 10 cm and diameter is 12 cm. is.....  

 

Answers

Answered by Anonymous
15

Given :

  • Slant height of cone = 10 cm.
  • Diameter of cone = 12 cm.

To Find :

  • Volume of the cone.

Solution :

We have the diameter of the cone as 12 cm.

Using this first calculate the radius (r) of the cone.

\longrightarrow \sf{Radius\:(r)\:=\:\dfrac{Diameter}{2}}

\longrightarrow \sf{Radius\:(r)\:=\:\dfrac{12}{2}}

\longrightarrow \sf{Radius\:(r) =6\:cm}

We know that volume of the cone is times the value of π times the value of r² (in this case 6²) times the value of height (h)

The quantity perpendicular height (h) of the cone is missing.

So, calculating the perpendicular height (h),

\longrightarrow \sf{l^2=r^2+h^2}

\longrightarrow \sf{(10)^2=(6)^2+h^2}

\longrightarrow \sf{100=36+h^2}

\longrightarrow \sf{100-36=h^2}

\longrightarrow \sf{64=h^2}

\longrightarrow\sf{h=\sqrt{64}}

\longrightarrow \sf{h=8}

° Height of the cone = 8 cm.

Now, we have all the required quantities.

Use the formula of volume of cone.

Formula :

\large{\boxed{\sf{\purple{Volume_{cone}\:=\:\dfrac{1}{3}\:\pi\:r^2\:h}}}}

Block in the data,

\sf{Volume_{cone}\:=\:\dfrac{1}{3}\:\times\:\dfrac{22}{7}\:\times\:6\:\times\:6\:\times\:8}

\sf{Volume_{cone}\:=\:\dfrac{22}{7}\:\times\:2\:\times\:6\:\times\:8}

\longrightarrow \sf{Volume_{cone}\:=\:\dfrac{22}{7}\:\times\:12\:\times\:8}

\longrightarrow \sf{Volume_{cone}\:=\:\dfrac{22}{7}\:\times\:96}

\longrightarrow \sf{Volume_{cone}\:=\:\dfrac{2112}{7}}

\longrightarrow \sf{Volume_{cone}\:=\:301.71}

\large{\boxed{\sf{\purple{Volume\:of\:cone\:=\:301.71\:cm^3}}}}

Answered by mddilshad11ab
6

\bold\green{\underline{\underline{GIVEN:}}}

  • The slant height of of cone=10cm
  • The diameter of cone=12cm

\bold\orange{\underline{\underline{:SOLUTION:}}}

  • DIAMETER=12cm
  • RADIUS=12/2=6cm

\bold\purple{\boxed{<em>FI</em><em>ND</em><em>-VOLUME</em><em> </em>\:AND \:HEIGHT}}

  • As we know that to find the find the volume of
  • cone before we have to find out the height
  • because height is missing here

\bold\purple{\boxed{l^2=r^2+h^2}}

⟹ {l}^{2}  =  {r}^{2}  +  {h}^{2}  \\  \\ ⟹ {10}^{2}  =  {6}^{2}  +  {h}^{2}  \\  \\ ⟹100 = 36 +  {h}^{2}  \\  \\ ⟹ {h}^{2}  = 100 - 36 \\  \\ ⟹ h = \sqrt{64}  = 8cm

NOW,

  • by using formula of volume of cone

⟹volume =  \frac{1}{3} \pi \:  {r}^{2} h \\  \\ ⟹volume =  \frac{1}{3}  \times  \frac{22}{7}  \times  {6}^{2}  \times 8 \\  \\ ⟹volume =  \frac{22 \times 6 \times 2 \times 8}{7}  \\  \\ ⟹volume = 371.71 {cm}^{3}

\bold\green{\boxed{VOLUME\:OF\:CONE=371.71\:cm^3}}

Similar questions