the volume of right circular cone is 9856cm³.If the radius of base 14 cm.find the----->
1. height of cone
2.Slant height
Answers
The volume of right circular cone is 9856 cm³. If the radius of base 14 cm. Find the :
Height of Cone
Slant Height
The volume of right circular cone = 9856 cm³
Radius of Base = 14 cm
Height of Cone
Slant Height
Height of Cone = 48 cm
Slant Height of Cone = 50 cm
♣ First Let's Find Height of Cone
Volume of Right Circular Cone = 9856 cm³
⇒ 1/3πr²h = 9856 cm³
⇒ 1/3 × π × r² × h = 9856 cm³
⇒ 1/3 × 22/7 × r² × h = 9856 cm³ (∵ π = 22/7)
⇒ 22 × 1/7 × 3 × r² × h = 9856 cm³
⇒ 22/21 × r² × h = 9856 cm³
⇒ 22/21 × r² × h = 9856 cm³ (Given r = 14 cm)
⇒ 22/21 × (14 cm)² × h = 9856 cm³
⇒ 22/21 × 196 cm² × h = 9856 cm³
⇒ (22 × 196)/21 cm² × h = 9856 cm³
⇒ 4312/21 cm² × h = 9856 cm³
⇒ 616/3 cm² × h = 9856 cm³
Multiplying both sides by 3
⇒ 3 × (616/3) cm² × h = 3 × 9856 cm³
⇒ 616 cm² × h = 29568 cm³
Dividing both sides by 616 cm²
⇒ (616 cm² × h)/616 cm² = 29568 cm³/616 cm²
⇒ h = 29568/616 cm
⇒ h = 48 cm
∴ Height of Cone = 48 cm
_______________________________________
♣ Now Let's Find Slant Height
Slant Height = √(r² + h²)
⇒ Slant Height = √[(14 cm)² + h²] (Given r = 14 cm)
⇒ Slant Height = √[196 cm² + h²]
⇒ Slant Height = √[196 cm² + (48 cm)²] (We found : h = 48 cm)
⇒ Slant Height = √[196 cm² + 2304 cm²]
⇒ Slant Height = √[2500 cm²]
⇒ Slant Height = √[50² cm²]
⇒ Slant Height = √[50²] cm
⇒ Slant Height = 50 cm
∴ Slant Height of Cone = 50 cm
___________________________
Request :
If there is any difficulty viewing this answer in app, Kindly see this answer at Web (https://brainly.in/) for clear steps and understanding.
height=48 cm
Slant Height =50 cm