Math, asked by aplgrissom826, 4 months ago

the width of a rectangle when the area is x^2-x-72 and the length is x+8

Answers

Answered by mittalsapna19
6

Answer:

x - 9...

Step-by-step explanation:

in photo..

hope it helps!!

Attachments:
Answered by Yuseong
6

 \boxed{\sf \red{x-9 = Length} }

Given:

• Length of the rectangle =  \sf {  x+8}

• Area of the rectangle =  \sf { x^2 - x - 72}

To calculate:

• Width of the rectangle.

Calculation:

As we know that,

\underline{ \boxed{ \pmb{\sf { {{Area}_{(Rectangle)} = Length \times Width}} }} }

According to the question,

 \longrightarrow \sf {x^2 - x - 72 = Length \times x+8 }

 \longrightarrow \sf {\dfrac{x^2 - x - 72}{x+8} = Length }

Now, we have to divide a polynomial by a polynomial. We'll find our answer by long division method :

(Performing division) :

  \large\begin{gathered} \\  \:  \: \sf{x - 9}  \over \sf{x  + 8 \Big) \: {x}^{2}   - x - 72  }\\ \sf{  \:  \:  \: {x}^{2} + 8x }   \\   \begin{gathered} -  \:  \:  \:   \:  \:  \:  -  \over \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 9x - 72} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ - 9x - 72}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    +  \:  \:  \:  \:  \:  \:  \:  \:   + \:    \over \:  \:  \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0} \end{gathered} \end{gathered}

 \longrightarrow \boxed{\sf \red{x-9 = Length} }

Therefore, length of the rectangle is (x-9).

Verification:

Area of rectangle = Length × Width

LHS:

→ Area of rectangle = x² - x - 72

RHS:

→ Length × Width

→ (x + 8)(x -9)

→ x(x - 9) + 8(x - 9)

→ x² - 9x + 8x - 72

x² - x - 72

  • LHS = RHS,

Hence, verified!

Similar questions