Math, asked by Zxchv, 1 year ago

The width of Ram's ground is 4 /5 of its length. if its perimeter is 80 m, find its dimensions

Answers

Answered by Anonymous
5
\huge{\mathfrak {\red{Q}{\underline{\underline{uestion}}}}}<br />



The width of Ram's ground is 4/5 of is length. If its perimeter is 80 m, find its dimensions.


___________________________________



{ \red{\mathfrak{\huge{A}}}}{\underline {\underline{\mathfrak{\huge{nswer}}}}}




\underline{ \underline {\mathfrak {Length = 22.23 \: m }}}

\underline{ \underline {\mathfrak {Breadth = 978.12 \: m }}}




___________________________________



 \huge\mathfrak \pink{ \overline{ \underline{ \: Brainliest \: Answer \: }}}




{ \sf Let, Length \: be \:} x \sf\: m \\ {\sf Then,} \: \frac{4}{5} x \: \sf m \\ \\ \sf Perimeter = 2(length × breadth) \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = { \sf 2} \bigg(x + { \sf \frac{4}{5} }x \bigg) \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = { \sf2}x + { \sf\frac{8}{5} }x \\ \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: By \: the \: given \: condition, <br />\\ \\ \\ \implies 2x + \frac{8x}{5} = 80 \\ \implies 10x \: + 8x = 400 \\ \implies 18x = 400 \\ \implies x = \frac{400}{18} = 22.23 \\ \\ \\ \therefore \sf Length \: is \: { \bf {\red {22.23 \:m }}}\: and \: {\sf width \: is }\: \frac{4}{5} \: × \: 22.23 \: = { \bf \red{ \: 978.12 \: m }}



___________________________________



\huge \orange{ \boxed{ \boxed{ \sf{ \therefore \: Length = 22.23 \: m}}}}




\huge \orange{ \boxed{ \boxed{ \sf{ \therefore \: Breadth = 978.12 \: m}}}}




✔✔ Hence, it is solved ✅✅




\huge \blue{ \boxed{ \boxed{ \mathscr{THANKS}}}}

sreelakshmyaj: 4/5 of 22.23 isnt 978.12
Answered by Anonymous
5

Answer:

\boxed{\red{\bf{22\frac{2}{9}m\:and}\:17\frac{7}{9}m}}

Step-by-step explanation:

Given , the width of the ground is 4/5 th of the length .

Let the length of the ground be x .

Then the width is equal to 4/5 x

We know that the perimeter of a rectangle is given by the formula :-

2 ( length + breadth )

This formula can help us find the dimensions of the rectangle .

2(l+b)=80m\\\\\implies 2(x+\frac{4x}{5})=80\\\\\implies x+\frac{4x}{5}=\frac{80}{2}\\\\\implies \frac{5x+4x}{5}=40\\\\\implies 9x=40\times 5\\\\\implies 9x=200\\\\\implies x=\frac{200}{9}

The length of the rectangle is hence 200/9 m .

\text{Breadth}=\frac{4}{5}\times \frac{200}{9}\\\\\implies \frac{160}{9}

We will convert the fractions into mixed fractions and write our final answer .

Similar questions