Chemistry, asked by kunalr434, 1 year ago

The work done in an open vessel at 300 k, when 56g iron reacts with dilute hcl

Answers

Answered by ShivamKashyap08
14

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Temperature given (T) = 300K.
  • Given Weight of Iron (w) = 56 grams.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

The reaction will occur in a open vessel, Therefore,

\large{\boxed{\tt W = - p_{ext} \Delta V}}

Here,

  • "W" = Work done.
  • {\tt p_{ext}} = External Pressure applied.
  • {\tt \Delta V} = Change in Volume.

Now,

\large{\boxed{\tt \Delta V = V_{final} - V_{initial}}}

\large{\tt \leadsto \Delta V = V_{final} - V_{initial}}

\large{\tt  \leadsto \Delta V =  V_{final} - V_{initial} \approx V_{final}}

Here The initial Volume has a very low concentration as it is solid ,

Therefore Can be neglected,

\large{\underline{\tt \leadsto \Delta V \approx V_{final}}}

Now, Applying Ideal gas equation,

\large{\boxed{\tt V = \dfrac{nRT}{P}}}

Substituting the values,

\large{\underline{\tt \leadsto V_{final} = \dfrac{nRT}{P_{ext}}}}

Applying in the work done formula,

\large{\boxed{\tt W = - p_{ext} \Delta V}}

\large{\tt \leadsto W = - P_{ext} \times V_{final} \: \: \: \: [\Delta V \approx V_{final}]}

Substituting the Volume,

\large{\tt \leadsto W = - P_{ext} \times \dfrac{nRT}{P_{ext}}}

\large{\tt \leadsto W = - \cancel{P_{ext}} \times \dfrac{nRT}{\cancel{P_{ext}}}}

\large{\tt W = - nRT \: -----(1) }

\large{\boxed{\tt W = - nRT}}

\rule{300}{1.5}

Now, Writing the Chemical Reaction,

\large{\bold{\tt Fe_{(s)} + 2HCl_{(aq)} \xrightarrow{} FeCl_{2_{(aq)}}+ H_{2_{(g)}}}}

Finding The Number of moles,

\large{\boxed{\tt No. \: of \: moles = \dfrac{Given \: weight}{Molar \: Mass}}}

Substituting the values,

\large{\tt \leadsto n = \dfrac{56}{56}}

\large{\tt \leadsto n = \dfrac{\cancel{56}}{\cancel{56}}}

\large{\underline{\tt \leadsto n = 1 \: mole}}

Now, Substituting it in the equation (1).

\large{\tt W = - nRT}

  • T = 300K,
  • R = 2 calories,
  • n = 1 mole,

\large{\tt \leadsto W = - 1 \times 2 \times 300}

\large{\tt \leadsto W = - 2 \times 300}

\huge{\boxed{\boxed{\tt W = - 600 \: calories}}}

Thus, The system Does 600 calories work on the atmosphere.

\rule{300}{1.5}

Similar questions