The young's modulus and rigidity modulus of a metal are 40 Gpa and 20 Gpa respectively. Then bulk modulus is
(A) 13.33 Gpa
(B) 26.67 Gpa
(C) 6.67 Gpa
(D) 120 Gpa
Answers
Given:
Young's modulus (Y) = 40 GPa
Rigidity/Shear modulus (G) = 20 GPa
To Find:
Bulk modulus (B)
Answer:
Relation between Young's modulus (Y), Shear modulus (G) & Bulk modulus(B):
By substituting values we get:
Bulk modulus (B) = 13.33 GPa
Correct Option:
Explanation:
Given:
Young's modulus (Y) = 40 GPa
Rigidity/Shear modulus (G) = 20 GPa
To Find:
Bulk modulus (B)
Answer:
Relation between Young's modulus (Y), Shear modulus (G) & Bulk modulus(B):
\boxed{\boxed{ \bf{Y = \dfrac{9BG}{3B + G}}}}
Y=
3B+G
9BG
By substituting values we get:
\begin{gathered}\rm \leadsto 40 = \dfrac{9B \times 20}{3B + 20} \\ \\ \rm \leadsto 40(3B + 20) = 180B \\ \\ \rm \leadsto 120B + 800 = 180B \\ \\ \rm \leadsto 180B - 120B = 800 \\ \\ \rm \leadsto 180B - 120B = 800 \\ \\ \rm \leadsto 60B = 800 \\ \\ \rm \leadsto B = \dfrac{800}{60} \\ \\ \rm \leadsto B = 13.33 \: GPa\end{gathered}
⇝40=
3B+20
9B×20
40(3B+20)=180B
120B+800=180B
180B−120B=800
180B−120B=800
60B=800
B= 60
800
⇝B=13.33GPa
\therefore∴ Bulk modulus (B) = 13.33 GPa
Correct Option: \mathfrak{(A) \ 13.33 \ GPa}(A) 13.33 GPa