Math, asked by ishwaryayasria, 1 year ago

The zeroes of the polynomial, 3x 2 -1 are

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{Polynomial is}\;\mathsf{3\,x^2-1}

\underline{\textbf{To find:}}

\textsf{Zeroes of the polynomial}\;\mathsf{3\,x^2-1}

\underline{\textbf{Solution:}}

\mathsf{Let\;f(x)=3\,x^2-1}

\textsf{This can be written as,}

\mathsf{f(x)=(\sqrt{3}\,x)^2-1^2}

\textsf{Using the identity,}\;\boxed{\bf\,a^2-b^2=(a-b)(a+b)}

\mathsf{f(x)=(\sqrt{3}\,x-1)\,(\sqrt{3}\,x+1)}

\mathsf{f(x)=0\;\implies}

\implies\mathsf{(\sqrt{3}\,x-1)\,(\sqrt{3}\,x+1)=0}

\implies\mathsf{\sqrt{3}\,x-1=0\;\;(or)\;\;\sqrt{3}\,x+1=0}

\implies\mathsf{\sqrt{3}\,x=1\;\;(or)\;\;\sqrt{3}\,x=-1}

\implies\mathsf{x=\dfrac{1}{\sqrt3}\;\;(or)\;\;x=\dfrac{-1}{\sqrt3}}

\therefore\textbf{Zeroes of the polynomial are}\;\mathsf{\dfrac{1}{\sqrt3}\;and\;\dfrac{-1}{\sqrt3}}

Answered by sujiitsingh567
1

Zeroes of the given polynomial3x 2 -1  are$\frac{1}{\sqrt{3}}$ and $\frac{-1}{\sqrt{3}}$

Polynomial

Polynomials are algebraic expressions that consist of variables and coefficients.

Solution:

Given $f(x)=3 x^{2}-1$

This can be written as,

$$f(x)=(\sqrt{3} x)^{2}-1^{2}$$

Using the identity, $\mathbf{a}^{2}-\mathbf{b}^{2}=(\mathbf{a}-\mathbf{b})(\mathbf{a}+\mathbf{b})$

$$f(x)=(\sqrt{3} x-1)(\sqrt{3} x+1)$$$$

f(x)=0

\Longrightarrow(\sqrt{3} x-1)(\sqrt{3} x+1)=0$$$$

\Longrightarrow \sqrt{3} x-1=0 \text { (or) } \sqrt{3} x+1=0$$$$

\Longrightarrow \sqrt{3} x=1 \text { (or) } \sqrt{3} x=-1$$$$

\Longrightarrow x=\frac{1}{\sqrt{3}} \text { (or) } x=\frac{-1}{\sqrt{3}}$$

Hence the  zeroes of the polynomial are$\frac{1}{\sqrt{3}}$ and $\frac{-1}{\sqrt{3}}$

learn more about roots of a polynomial here

https://brainly.in/question/4792957?msp_poc_exp=4

#SPJ2

Similar questions