The zeros of the polynomial 6 y ( y + 2 )( y – 3 )
0 , 2 , -3
0 , - 2 , 3
- 2 , 3
2 , -3
Answers
EXPLANATION.
Zeroes of the polynomial.
⇒ 6y(y + 2)(y - 3).
As we know that,
We can write equation as,
⇒ 6y(y² - 3y + 2y - 6).
⇒ 6y(y² - y - 6).
⇒ 6y³ - 6y² - 36y.
Take common 6y from the equation, we get.
⇒ 6y(y² - y - 6).
If we factorizes the equation, we get.
⇒ y² - y - 6.
Factorizes the equation into middle term splits, we get.
⇒ y² - 3y + 2y - 6.
⇒ y(y - 3) + 2(y - 3).
⇒ (y + 2)(y - 3).
Now, we can write equation as,
⇒ 6y(y + 2)(y - 3).
This equations is equal to 0.
⇒ 6y(y + 2)(y - 3) = 0.
⇒ 6y = 0.
⇒ y = 0. - - - - - (1).
⇒ (y + 2) = 0.
⇒ y = - 2. - - - - - (2).
⇒ (y - 3) = 0.
⇒ y = 3. - - - - - (3).
Zeroes of the polynomial are = 0, - 2, 3.
Option [B] is correct answer.
MORE INFORMATION.
Conjugate roots.
(1) = If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
(2) = If D > 0.
One roots = α + √β.
Other roots = α - √β.
Note -Here I solve this problem using two methods
•First method
Given polynomial
Zeroes of polynomial
- The zeroes of the polynomial is
_______________________
•Second method
f (y) =6y +(y + 2)(y - 3)
f (y) =0
- 6 y =0 ,y = 0
- y+2 =0,y = -2
- y-3 =0,y=3
So answer will be 0,-2 and 3
Refer the attachment
- For detail information