Theme of the poem A PHOTOGRAPH class 11
Answers
Answer:
Explanation:
The poem a Photograph is written by an english poet Shirley Toulson. This poem describes the mortality of humans with the perennial nature of the sea.
The poet looks at her mother's childhood photograph where her mother and her two cousins were dresses for the beach on a seaside holiday. The mother is the oldest and twelve years old in the photograph. Now, the mother has been dead for twelve years.
The mother and the two cousins, Betty and Dolly look carefree and joyful in the photograph. Now the poet's mother's is no more. The only thing that has not changed over the years is the sea. The loss of her mother is extremely painful to the poet. But over the years, she has come to terms with it. The joy and laughter of her mother in the photograph only brings her pain.
The mother used to laugh at the photograph and say how weirdly they were dressed for the beach. Now, her mother is no longer with her. The poet remembers her mother's reaction later in her life and feels a sense of loss while looking a the the photograph. These memories make her personal loss acute.
The poet speaks about the shortness of human life against the permenance of the sea. Human beings are mere mortals and we all have to leave this world one day or the another.
Answer:
Answer:
Explanation:
\Large{\underline{\underline{\it{Given:}}}}
Given:
\sf{\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} =2\:cot\:A}
secA−1
tanA
−
1+cosA
sinA
=2cotA
\Large{\underline{\underline{\it{To\:Prove:}}}}
ToProve:
LHS = RHS
\Large{\underline{\underline{\it{Solution:}}}}
Solution:
→ Taking the LHS of the equation,
\sf{LHS=\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} }LHS=
secA−1
tanA
−
1+cosA
sinA
→ Applying identities we get
=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1}{cos\:A}-1 } -\dfrac{sin\:A}{1+cos\:A} }=
cosA
1
−1
cosA
sinA
−
1+cosA
sinA
→ Cross multiplying,
=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1-cos\:A}{cos\:A} } -\dfrac{sin\:A}{1+cos\:A} }=
cosA
1−cosA
cosA
sinA
−
1+cosA
sinA
→ Cancelling cos A on both numerator and denominator
=\sf{\dfrac{sin\:A}{1-cos\:A} -\dfrac{sin\:A}{1+cos\:A}}=
1−cosA
sinA
−
1+cosA
sinA
→ Again cross multiplying we get,
=\sf{\dfrac{sin\:A(1+cos\:A)-sin\:A(1-cos\:A)}{(1+cos\:A)(1-cos\:A)}}=
(1+cosA)(1−cosA)
sinA(1+cosA)−sinA(1−cosA)
→ Taking sin A as common,
\sf{=\dfrac{sin\:A[1+cos\:A-(1-cos\:A)]}{(1^{2}-cos^{2}\:A ) }}=
(1
2
−cos
2
A)
sinA[1+cosA−(1−cosA)]
\sf{=\dfrac{sin\:A[1+cos\:A-1+cos\:A]}{sin^{2}\:A } }=
sin
2
A
sinA[1+cosA−1+cosA]
→ Cancelling sin A on both numerator and denominator
\sf{=\dfrac{2\:cos\:A}{sin\:A} }=
sinA
2cosA
\sf=2\times \dfrac{cos\:A}{sin\:A} }
\sf{=2\:cot\:A}=2cotA
=\sf{RHS}=RHS
→ Hence proved.
\Large{\underline{\underline{\it{Identitites\:used:}}}}
Identititesused:
\sf{tan\:A=\dfrac{sin\:A}{cos\:A} }tanA=
cosA
sinA
\sf{sec\:A=\dfrac{1}{cos\:A} }secA=
cosA
1
\sf{(a+b)\times(a-b)=a^{2}-b^{2} }(a+b)×(a−b)=a
2
−b
2
\sf{(1-cos^{2}\:A)=sin^{2} \:A}(1−cos
2
A)=sin
2
A
\sf{\dfrac{cos\:A}{sin\:A}=cot\:A}
sinA
cosA
=cotA