English, asked by saurav012pandey, 6 months ago

Theme of the poem A PHOTOGRAPH class 11​

Answers

Answered by TheValkyrie
9

Answer:

Explanation:

The poem a Photograph is written by an english poet Shirley Toulson. This poem describes the mortality of humans with the perennial nature of the sea.

The poet looks at her mother's childhood photograph where her mother and her two cousins were dresses for the beach on a seaside holiday. The mother is the oldest and twelve years old in the photograph. Now, the mother has been dead for twelve years.

The mother and the two cousins, Betty and Dolly look carefree and joyful in the photograph. Now the poet's mother's is no more. The only thing that has not changed over the years is the sea. The loss of her mother is extremely painful to the poet. But over the years, she has come to terms with it. The joy and laughter of her mother in the photograph only brings her pain.

The mother used to laugh at the photograph and say how weirdly they were dressed for the beach. Now, her mother is no longer with her.  The poet remembers her mother's reaction later in her life and feels a sense of loss while looking a the the photograph. These memories make her personal loss acute.

The poet speaks about the shortness of human life against the permenance of the sea. Human beings are mere mortals and we all have to leave this world one day or the another.

Answered by abdulrubfaheemi
0

Answer:

Answer:

Explanation:

\Large{\underline{\underline{\it{Given:}}}}

Given:

\sf{\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} =2\:cot\:A}

secA−1

tanA

1+cosA

sinA

=2cotA

\Large{\underline{\underline{\it{To\:Prove:}}}}

ToProve:

LHS = RHS

\Large{\underline{\underline{\it{Solution:}}}}

Solution:

→ Taking the LHS of the equation,

\sf{LHS=\dfrac{tan\:A}{sec\:A-1} -\dfrac{sin\:A}{1+cos\:A} }LHS=

secA−1

tanA

1+cosA

sinA

→ Applying identities we get

=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1}{cos\:A}-1 } -\dfrac{sin\:A}{1+cos\:A} }=

cosA

1

−1

cosA

sinA

1+cosA

sinA

→ Cross multiplying,

=\sf{\dfrac{\dfrac{sin\:A}{cos\:A} }{\dfrac{1-cos\:A}{cos\:A} } -\dfrac{sin\:A}{1+cos\:A} }=

cosA

1−cosA

cosA

sinA

1+cosA

sinA

→ Cancelling cos A on both numerator and denominator

=\sf{\dfrac{sin\:A}{1-cos\:A} -\dfrac{sin\:A}{1+cos\:A}}=

1−cosA

sinA

1+cosA

sinA

→ Again cross multiplying we get,

=\sf{\dfrac{sin\:A(1+cos\:A)-sin\:A(1-cos\:A)}{(1+cos\:A)(1-cos\:A)}}=

(1+cosA)(1−cosA)

sinA(1+cosA)−sinA(1−cosA)

→ Taking sin A as common,

\sf{=\dfrac{sin\:A[1+cos\:A-(1-cos\:A)]}{(1^{2}-cos^{2}\:A ) }}=

(1

2

−cos

2

A)

sinA[1+cosA−(1−cosA)]

\sf{=\dfrac{sin\:A[1+cos\:A-1+cos\:A]}{sin^{2}\:A } }=

sin

2

A

sinA[1+cosA−1+cosA]

→ Cancelling sin A on both numerator and denominator

\sf{=\dfrac{2\:cos\:A}{sin\:A} }=

sinA

2cosA

\sf=2\times \dfrac{cos\:A}{sin\:A} }

\sf{=2\:cot\:A}=2cotA

=\sf{RHS}=RHS

→ Hence proved.

\Large{\underline{\underline{\it{Identitites\:used:}}}}

Identititesused:

\sf{tan\:A=\dfrac{sin\:A}{cos\:A} }tanA=

cosA

sinA

\sf{sec\:A=\dfrac{1}{cos\:A} }secA=

cosA

1

\sf{(a+b)\times(a-b)=a^{2}-b^{2} }(a+b)×(a−b)=a

2

−b

2

\sf{(1-cos^{2}\:A)=sin^{2} \:A}(1−cos

2

A)=sin

2

A

\sf{\dfrac{cos\:A}{sin\:A}=cot\:A}

sinA

cosA

=cotA

Similar questions