then
If 05x52n and cosx|< sin x
π π
4°2
the set of values of x is
the number of solutions that are integral
IT
multiples of 4 is three
the sum of the largest and the smallest
Зл
solution is 4
the solution set is L42
Answers
Answered by
0
Answer:
$$\begin{lgathered}\boxed { a^{3}+b^{3}+c^{3}\\=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}\end{lgathered}$$
Value of $$\frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}$$
= $$\frac{a^{3}}{abc}+\frac{b^{3}}{abc}+\frac{c^{3}}{abc}$$
= $$\frac{a^{3}+b^{3}+c^{3}}{abc}$$
= $$\frac{(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}{abc}$$
= $$\frac{0\times(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}{abc}$$
/* from (1) */
= $$\frac{3abc}{abc}$$
= $3$
Therefore,
Value of $$\frac{a^{2}}{bc}+\frac{b^{2
Similar questions