then the value of lambda is ??
Answers
So we're given,
Performing the operation
Taking common from
Performing the operation
Taking common from
Performing the operation
Taking common from
Performing the operation
Now expanding along or we get,
Step-by-step explanation:
So we're given,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=\left|\begin{array}{ccc}1&1&1\\a^2&b^2&c^2\\a^3&b^3&c^3\end{array}\right|$}\end{gathered}
⟶Δ=
∣
∣
∣
∣
∣
∣
1
a
2
a
3
1
b
2
b
3
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Performing the operation \small\text{$\displaystyle C_1\to C_1-C_2,$}C
1
→C
1
−C
2
,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=\left|\begin{array}{ccc}0&1&1\\a^2-b^2&b^2&c^2\\a^3-b^3&b^3&c^3\end{array}\right|$}\end{gathered}
⟶Δ=
∣
∣
∣
∣
∣
∣
0
a
2
−b
2
a
3
−b
3
1
b
2
b
3
1
c
2
c
3
∣
∣
∣
∣
∣
∣
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=\left|\begin{array}{ccc}0&1&1\\(a-b)(a+b)&b^2&c^2\\(a-b)(a^2+ab+b^2)&b^3&c^3\end{array}\right|$}\end{gathered}
⟶Δ=
∣
∣
∣
∣
∣
∣
0
(a−b)(a+b)
(a−b)(a
2
+ab+b
2
)
1
b
2
b
3
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Taking \small\text{$\displaystyle a-b$}a−b common from \small\text{$\displaystyle C_1,$}C
1
,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)\left|\begin{array}{ccc}0&1&1\\a+b&b^2&c^2\\a^2+ab+b^2&b^3&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
1
b
2
b
3
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Performing the operation \small\text{$\displaystyle C_2\to C_2-C_3,$}C
2
→C
2
−C
3
,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)\left|\begin{array}{ccc}0&0&1\\a+b&b^2-c^2&c^2\\a^2+ab+b^2&b^3-c^3&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
0
b
2
−c
2
b
3
−c
3
1
c
2
c
3
∣
∣
∣
∣
∣
∣
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)\left|\begin{array}{ccc}0&0&1\\a+b&(b-c)(b+c)&c^2\\a^2+ab+b^2&(b-c)(b^2+bc+c^2)&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
0
(b−c)(b+c)
(b−c)(b
2
+bc+c
2
)
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Taking \small\text{$\displaystyle b-c$}b−c common from \small\text{$\displaystyle C_2,$}C
2
,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)\left|\begin{array}{ccc}0&0&1\\a+b&b+c&c^2\\a^2+ab+b^2&b^2+bc+c^2&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
0
b+c
b
2
+bc+c
2
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Performing the operation \small\text{$\displaystyle C_2\to C_2-C_1,$}C
2
→C
2
−C
1
,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)\left|\begin{array}{ccc}0&0&1\\a+b&c-a&c^2\\a^2+ab+b^2&bc+c^2-a^2-ab&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
0
c−a
bc+c
2
−a
2
−ab
1
c
2
c
3
∣
∣
∣
∣
∣
∣
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)\left|\begin{array}{ccc}0&0&1\\a+b&c-a&c^2\\a^2+ab+b^2&b(c-a)+(c+a)(c-a)&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
0
c−a
b(c−a)+(c+a)(c−a)
1
c
2
c
3
∣
∣
∣
∣
∣
∣
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)\left|\begin{array}{ccc}0&0&1\\a+b&c-a&c^2\\a^2+ab+b^2&(c-a)(a+b+c)&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
0
c−a
(c−a)(a+b+c)
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Taking \small\text{$\displaystyle c-a$}c−a common from \small\text{$\displaystyle C_2,$}C
2
,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)(c-a)\left|\begin{array}{ccc}0&0&1\\a+b&1&c^2\\a^2+ab+b^2&a+b+c&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)(c−a)
∣
∣
∣
∣
∣
∣
0
a+b
a
2
+ab+b
2
0
1
a+b+c
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Performing the operation \small\text{$\displaystyle C_1\to C_1-(a+b)C_2,$}C
1
→C
1
−(a+b)C
2
,
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)(c-a)\left|\begin{array}{ccc}0&0&1\\a+b-(a+b)&1&c^2\\a^2+ab+b^2-(a+b)(a+b+c)&a+b+c&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)(c−a)
∣
∣
∣
∣
∣
∣
0
a+b−(a+b)
a
2
+ab+b
2
−(a+b)(a+b+c)
0
1
a+b+c
1
c
2
c
3
∣
∣
∣
∣
∣
∣
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)(c-a)\left|\begin{array}{ccc}0&0&1\\0&1&c^2\\-ab-bc-ca&a+b+c&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)(c−a)
∣
∣
∣
∣
∣
∣
0
0
−ab−bc−ca
0
1
a+b+c
1
c
2
c
3
∣
∣
∣
∣
∣
∣
\begin{gathered}\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)(c-a)\left|\begin{array}{ccc}0&0&1\\0&1&c^2\\-(ab+bc+ca)&a+b+c&c^3\end{array}\right|$}\end{gathered}
⟶Δ=(a−b)(b−c)(c−a)
∣
∣
∣
∣
∣
∣
0
0
−(ab+bc+ca)
0
1
a+b+c
1
c
2
c
3
∣
∣
∣
∣
∣
∣
Now expanding along \small\text{$\displaystyle R_1$}R
1
or \small\text{$\displaystyle C_1$}C
1
we get,
\small\text{$\displaystyle\longrightarrow\Delta=(a-b)(b-c)(c-a)(ab+bc+ca)$}⟶Δ=(a−b)(b−c)(c−a)(ab+bc+ca)
\small\text{$\displaystyle\Longrightarrow\underline{\underline{\lambda=1}}$}⟹
λ=1