Math, asked by lameesafra, 1 month ago

There are four terms in an A.P. In which sum of the first and last term is 13 and the <br /><br />product of middle terms is 40. Then the terms of the given A.P​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

Four terms are in AP.

Let assume that four terms in

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:AP \: are-\begin{cases} &amp;\sf{a - 3d} \\ &amp;\sf{a - d}\\ &amp;\sf{a + d}\\ &amp;\sf{a + 3d} \end{cases}\end{gathered}\end{gathered}

Further given that,

Sum of first and last term is 13.

\rm :\longmapsto\:a - 3d + a + 3d = 13

\rm :\longmapsto\:2a  = 13

\bf\implies \:a = \dfrac{13}{2}  -  -  - (1)

Further given that,

Product of middle terms is 40

\rm :\longmapsto\:(a - d)(a + d) = 40

\rm :\longmapsto\: {a}^{2} -  {d}^{2} = 40

\rm :\longmapsto\: {\bigg(\dfrac{13}{2} \bigg) }^{2}  -  {d}^{2}  = 40

\rm :\longmapsto\:\dfrac{169}{4}   -  {d}^{2}  = 40

\rm :\longmapsto\:-  {d}^{2}  = 40 - \dfrac{169}{4}

\rm :\longmapsto\:-  {d}^{2}  = \dfrac{160 - 169}{4}

\rm :\longmapsto\:-  {d}^{2}  = \dfrac{ - 9}{4}

\rm :\longmapsto\:{d}^{2}  = \dfrac{9}{4}

\bf\implies \:d \:  =  \:  \pm \: \dfrac{3}{2}

So, two cases arises,

Case :- 1

\rm :\longmapsto\:When \: a = \dfrac{13}{2}  \: and \:d =  \dfrac{3}{2}

So, numbers in

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:AP \: are-\begin{cases} &amp;\sf{a - 3d = 2} \\ &amp;\sf{a - d = 5}\\ &amp;\sf{a + d = 8}\\ &amp;\sf{a + 3d = 11} \end{cases}\end{gathered}\end{gathered}

Case :- 2

\rm :\longmapsto\:When \: a = \dfrac{13}{2}  \: and \: d = \:   -  \: \dfrac{3}{2}

So, numbers in

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:AP \: are-\begin{cases} &amp;\sf{a - 3d = 11} \\ &amp;\sf{a - d = 8}\\ &amp;\sf{a + d = 5}\\ &amp;\sf{a + 3d = 2} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Answered by Anonymous
0

Answers:-

11, 8, 5, 2

Hope it helps you

Similar questions