Math, asked by sreshtaayyagari08, 1 month ago

There exist positive integers A, B and C with no common factors greater than 1, such that Alog 5 + Blog 2 = C.
The sum A+B+C equals (Here the base of the log is 200)
A+B+C = 7
A+B+C = 6
A-B+C=0
A+B-C=0​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{A, B and C are positive intgers with no common factors}

\mathsf{greater\;than\;1\;and\;A\,log5+B\,log2=C}

\underline{\textbf{To find:}}

\textsf{The value of A+B+C}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{A\,log\,5+B\,log\,2=C}

\textsf{This can be written as,}

\mathsf{log\,5^A+log\,2^B=C}

\mathsf{log(5^A\,2^B)=C}

\textsf{Convert into exponential form, we get}

\mathsf{200^C=5^A\,2^B}

\mathsf{(25{\times}8)^C=5^A\,2^B}

\mathsf{(5^2{\times}2^3)^C=5^A\,2^B}

\mathsf{5^{2C}{\times}2^{3C}=5^A\,2^B}

\textsf{Equating powers on bothsides we get}

\mathsf{A=2C\;\;and\;\;B=3C}

\textsf{But A and B have no common factors}

\implies\mathsf{C=1}

\implies\mathsf{A=2\;\;\&\;\;B=3}

\mathsf{Now,}

\mathsf{A+B+C=2+3+1=6}

\implies\boxed{\mathsf{A+B+C=6}}

\underline{\textbf{Answer:}}

\mathsf{Option (2) is correct}

Answered by amitnrw
2

Given  : There exist positive integers A, B and C with no common factors greater than 1, such that Alog 5 + Blog 2 = C.

 the base of the log is 200)

To Find :  The sum A+B+C

Solution:

Alog 5 + Blog 2 = C.

=> log 5^A + log 2^B = C

=> log ( 5^A * 2^B)  = C

=> 200^C  = 5^A * 2^B

=> ( 5² * 2³)^C =  5^A * 2^B

=> 5^2C * 5^3C = 5^A * 2^B

=> A = 2C

B = 3C

A , B and C are co prime

Hence  C = 1 ,  A = 2 , B = 3

A + B + C = 2 + 3 + 1  = 6

Learn More:

If log4=1.3868 ,then the approximate value of log (4.01) 1. 1.3968 2 ...

brainly.in/question/16250601

If log x*2-9x+7=3 find the value of x 3 - Brainly.in

brainly.in/question/15457719

Similar questions