theta is an acute angle such that cot square theta =7/8 find the value of (1+sin theta) (1-sin theta)/(1+cos theta )(1-cos theta)
Answers
Answer:
Given that θ is an acute angle which gives us θ lies in first quadrant i.e.
θ € 1st quadrant.
and we know that in first quadrant
sinθ = +ve...........(¡)
&
cosθ =- ve...........(¡¡)
[bold equations needed only if single power of trigonometric ratios is asked].
Given that cot^2θ =7/8
Now as we know that
Also we know that
Also,
Now using these values of Cos^2θ and sin^2θ we can easily calculate the value of given expression as:-
Answer:
Given that θ is an acute angle which gives us θ lies in first quadrant i.e.
θ € 1st quadrant.
and we know that in first quadrant
sinθ = +ve...........(¡)
&
cosθ =- ve...........(¡¡)
[bold equations needed only if single power of trigonometric ratios is asked].
Given that cot^2θ =7/8
Now as we know that
\begin{gathered} 1 + {cot}^{2} \theta = {cosec}^{2} \theta \\ \implies \: cosec {}^{2} \theta = 1 + \frac{7}{8} \\ = \frac{15}{8} .\end{gathered}
1+cot
2
θ=cosec
2
θ
⟹cosec
2
θ=1+
8
7
=
8
15
.
Also we know that
\begin{gathered} {cosec}^{2} \theta = \frac{1}{ {sin}^{2}\theta} \\ \implies {sin}^{2} \theta = \frac{8}{15} \end{gathered}
cosec
2
θ=
sin
2
θ
1
⟹sin
2
θ=
15
8
Also,
\begin{gathered} {cos}^{2} \theta = 1 - {sin}^{2} \theta \\ \implies {cos}^{2} \theta = 1 - \frac{8}{15} \\ \implies {cos}^{2} \theta = \frac{7}{15} \end{gathered}
cos
2
θ=1−sin
2
θ
⟹cos
2
θ=1−
15
8
⟹cos
2
θ=
15
7
Now using these values of Cos^2θ and sin^2θ we can easily calculate the value of given expression as:-
\begin{gathered} \frac{(1 + sin \theta)(1 - sin \theta) }{(1 + cos \theta)(1 - cos \theta)} \\ = \frac{ {1}^{2} - {sin}^{2} \theta}{ {1}^{2} - {cos}^{2} \theta} \\ \end{gathered}
(1+cosθ)(1−cosθ)
(1+sinθ)(1−sinθ)
=
1
2
−cos
2
θ
1
2
−sin
2
θ
\begin{gathered} = \frac{1 - \frac{8}{15} }{1 - \frac{7}{15} } \\ = \frac{ \frac{7}{15} }{ \frac{8}{15} } \\ = \frac{7}{8} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \boxed{ANSWER}} \: \end{gathered}
=
1−
15
7
1−
15
8
=
15
8
15
7
=
8
7
ANSWER