Math, asked by swathimadhavan66, 4 months ago

Third term of an arthemetic sequence is 34 and 6th term is 67. a) find the common difference b) Find the first term​

Answers

Answered by amansharma264
103

EXPLANATION.

3rd term of an A.P. = 34.

6th term of an A.P. = 67.

As we know that,

General terms of an A.P.

⇒ Tₙ = a + (n - 1)d.

⇒ T₃ = 34.

⇒ T₃ = a + (3 - 1)d.

⇒ T₃ = a + 2d.

⇒ a + 2d = 34. ⇒ (1).

⇒ T₆ = 67.

⇒ T₆ = a + (6 - 1)d.

⇒ T₆ = a + 5d.

⇒ a + 5d = 67. ⇒ (2).

From equation (1) & (2), we get.

⇒ a + 2d = 34.

⇒ a + 5d = 67.

We get,

⇒ - 3d = - 33.

⇒ d = 11.

Put the value of d = 11 in equation (1), we get.

⇒ a + 2d = 34.

⇒ a + 2(11) = 34.

⇒ a = 34 - 22.

⇒ a = 12.

First term = a = 12.

Common difference = d = 11.

                                                                                                                         

MORE INFORMATION.

General terms of an A.P.

General term (nth term) of an A.P. is given by,

Tₙ = a + (n - 1)d.

Sum of n terms of an A.P.

Sₙ = n/2 [ 2a + (n - 1)d]  Or  Sₙ = n/2 [ a + Tₙ].

(1) = If sum of n terms Sₙ is given then general term Tₙ = Sₙ - Sₙ₋₁ where Sₙ₋₁ is sum of (n - 1) terms of A.P.

Answered by MiraculousBabe
316

Answer:

Explanation :-

3rd term of an A.P. = 34.

6th term of an A.P. = 67.

As we know that,

General terms of an A.P.

⇒ Tₙ = a + (n - 1)d.

⇒ T₃ = 34.

⇒ T₃ = a + (3 - 1)d.

⇒ T₃ = a + 2d.

⇒ a + 2d = 34. ⇒ (1).

⇒ T₆ = 67.

⇒ T₆ = a + (6 - 1)d.

⇒ T₆ = a + 5d.

⇒ a + 5d = 67. ⇒ (2).

From equation (1) & (2), we get.

⇒ a + 2d = 34.

⇒ a + 5d = 67.

We get,

⇒ - 3d = - 33.

⇒ d = 11.

Put the value of d = 11 in equation (1), we get.

⇒ a + 2d = 34.

⇒ a + 2(11) = 34.

⇒ a = 34 - 22.

⇒ a = 12.

First term = a = 12.

Common difference = d = 11.                                                      

Learn more!!

General terms of an A.p. :-

General term (nth term) of an A.P. is given by,

Tₙ = a + (n - 1)d.

Sum of n terms of an A.P. :-

Sₙ = n/2 [ 2a + (n - 1)d]  Or  Sₙ = n/2 [ a + Tₙ].

(1) = If sum of n terms Sₙ is given then general term Tₙ = Sₙ - Sₙ₋₁ where Sₙ₋₁ is sum of (n - 1) terms of A.P.

Step-by-step explanation:

Hope  \: it  \: helps!

Similar questions