Math, asked by cheerypoori, 1 month ago

This is from the lesson exponents. Please help me...​

Attachments:

Answers

Answered by Anonymous
5

Given :-

  • \tt\small{ \left(\dfrac57\right)^{2n} \times\left\{\left( \dfrac{49}{25} \right)\div\left(\dfrac75\right)^{3} \right\} =   \left(  \dfrac{5}{7} \right)^{ - 3} }

To find : Value of n

Solution :-

\tt\small{ \implies\left(\dfrac57\right)^{2n} \times\left\{\left( \dfrac{49}{25} \right)\div\left(\dfrac75\right)^{3} \right\} =   \left(  \dfrac{5}{7} \right)^{ - 3} }

\tt\small{ \implies\left(\dfrac57\right)^{2n} \times\left\{\left( \dfrac{49}{25} \right) \times \left(\dfrac57\right)^{3} \right\} =   \left(  \dfrac{7}{5} \right)^{3} }

\tt\small{ \implies\left(\dfrac57\right)^{2n} \times\left\{\left( \dfrac{49}{25} \right) \times \left(\dfrac{125}{343}\right) \right\} =   \left(  \dfrac{343}{125} \right) }

\tt\small{ \implies\left(\dfrac57\right)^{2n} \times\left\{\left( \dfrac{5}{7} \right)  \right\} =   \left(  \dfrac{343}{125} \right) }

\tt\small{ \implies\left(\dfrac57\right)^{2n}=   \left(  \dfrac{343}{125} \right)  \div  \left( \dfrac{7}{5}  \right) }

\tt\small{ \implies\left(\dfrac57\right)^{2n}=   \left(  \dfrac{343}{125} \right)   \times   \left( \dfrac{5}{7}  \right) }

\tt\small{ \implies\left(\dfrac57\right)^{2n}=   \left(  \dfrac{49}{25} \right)   }

\tt\small{ \implies\left(\dfrac57\right)^{2n}=   \left(  \dfrac{ {7}^{2} }{ {5}^{2} } \right)   }

\tt\small{ \implies\left(\dfrac57\right)^{2n}=   \left(  \dfrac{ {7}}{ {5} } \right)^{2}   }

\tt\small{ \implies\left(\dfrac57\right)^{2n}=   \left(  \dfrac{5}{7} \right)^{ - 2}   }

\tt\small{ \implies 2n =  - 2}

\tt\small{ \implies n =  -  \dfrac{2}{2} }

 \boxed{  \tt\implies n =  - 1}

Therefore the required value of n is -1.

Similar questions