Math, asked by kanakraghav0, 11 hours ago

this is the question ​

Attachments:

Answers

Answered by Anonymous
72

\large\underline{\underline\text{Question:}} \\

  • In Attachment.

.

\large\underline{\underline\text{Solution:}} \\

As given,

  •  \sin( \theta -  \phi)  =  \frac{1}{2}  \\

As we know that,

  •  \sin( {30}^{ \circ} )  =  \frac{1}{2}  \\

So we can say that,

  •  \sin( \theta -  \phi)  =   \sin( {30}^{ \circ} ) \\

Comparing both sides,

  •  \theta -  \phi  =    {30}^{ \circ}  \:  \:  \:  \:  \:  \: ...(1) \\

As given,

  •  \cos( \theta +  \phi)  =  \frac{1}{2}  \\

As we know that,

  •  \cos( {60}^{ \circ} )  =  \frac{1}{2}  \\

So we can say that,

  •  \cos( \theta +   \phi)  =   \cos( {60}^{ \circ} ) \\

Comparing both sides,

  • \theta +   \phi =  {60}^{ \circ}  \:  \:  \:  \:  \:  \: ...(2) \\

By Elimination method we can find the values,

We have,

  •  \theta -  \phi  =    {30}^{ \circ}  \:  \:  \:  \:  \:  \: ...(1) \\

  • \theta +   \phi =  {60}^{ \circ}  \:  \:  \:  \:  \:  \: ...(2) \\

Let substract Eq [1] from Eq [2],

 \cdot \cdot \cdot \longrightarrow ( \theta +  \phi) - ( \theta -  \phi) =  {60}^{ \circ}  -  {30}^{ \circ}  \\

Opening the brackets,

 \cdot \cdot \cdot \longrightarrow \theta +  \phi-  \theta  +   \phi =  {60}^{ \circ}  -  {30}^{ \circ}  \\

 \cdot \cdot \cdot \longrightarrow 2 \phi   =  {30}^{ \circ}  \\

 \cdot \cdot \cdot \longrightarrow   \phi   =   \frac{{30}^{ \circ}}{2} \\

We get,

 \cdot \cdot \cdot \longrightarrow    \boxed{\phi   =    {15}^{ \circ} } \\  \\

\large\underline{\underline\text{Required Answer:}} \\

  • Option B) 15°.

Similar questions