This is very important question which will surely come. So, pls help!
_________________________
Explain step by step.
Good Job!
Answers
Hey Mate ! here are your Answers :
Given :
- 3p+1/3p = 2√3
To Find :
Solution :
1] As Given,
By using the identity:
We get, that :
__________________________
2] As Given,
By using the identity:
We get that :
__________________________
3] As we got,
Using the identity:
We get that :
Best of luck for exams !
ey Mate ! here are your Answers :
Given :
3p+1/3p = 2√3
To Find :
\tt{ \bull 3p - \frac{1}{3p} }∙3p−3p1
\tt{ \bull {9p}^{2} + \frac{1}{ {9p}^{2} } }∙9p2+9p21
\tt{ \bull {81p}^{4} + \frac{1}{ {81p}^{4} } }∙81p4+81p41
Solution :
1] As Given,
\tt{ 3p + \frac{1}{3p} = 2 \sqrt{3} }3p+3p1=23
By using the identity:
\tt{ {(x - y)}^{2} + 4xy = {(x + y)}^{2} }(x−y)2+4xy=(x+y)2
We get, that :
\tt{ \implies {(3p - \frac{1}{3p} )}^{2} +4 (3p \times \frac{1}{3p}) = {(3p + \frac{1}{3p} )}^{2}}⟹(3p−3p1)2+4(3p×3p1)=(3p+3p1)2
\tt{ {(3p - \frac{1}{3p}) }^{2} - 4 = {(2 \sqrt{3} )}^{2} }(3p−3p1)2−4=(23)2
\tt{ \implies {(3p - \frac{1}{3p} )}^{2} - 4 = 12}⟹(3p−3p1)2−4=12
\implies \tt{(3p - \frac{1}{3p} {)}^{2} = 12 - 4}⟹(3p−3p1)2=12−4
\tt{ \implies 3p - \frac{1}{3p} = \sqrt{8} }⟹3p−3p1=8
\red{ \underline{ \boxed{ \tt{ \therefore \:3p - \frac{1}{3p} = 2 \sqrt{2}}}}}∴3p−3p1=22
__________________________
2] As Given,
\tt{3p + 1 \frac{1}{3p} = 2 \sqrt{3} }3p+13p1=23
By using the identity:
\tt{ {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy}(x+y)2=x2+y2+2xy
We get that :
\tt{ \implies {(3p + \frac{1}{3p} )}^{2} = (2 \sqrt{3} {)}^{2} }⟹(3p+3p1)2=(23)2
\tt{ \implies 9 {p}^{2} + \frac{1}{9 {p}^{2} } + 2 = 12}⟹9p2+9p21+2=12
\tt{ \implies \tt{9 {p}^{2} + \frac{1}{9 {p}^{2} } = 12 - 2}}⟹9p2+9p21=12−2
\green{ \underline{ \boxed{ \tt{ \therefore \: 9 {p}^{2} + \frac{1}{9 {p}^{2} } = 10}}}}∴9p2+9p21=10
__________________________
3] As we got,
\green{ \underline{ \boxed{ \tt{ \therefore \: 9 {p}^{2} + \frac{1}{9 {p}^{2} } = 10}}}}∴