This is worth 100 points so be serious Prove this: tan^2 A+ cot^2 A+2= sec^2 A . Cosec^2 A
Answers
Answered by
0
Answer:
to prove : cot2A−cot2B=cos2A−cos2Bsin2A∗sin2B=cosec2A−cosec2B
Step-by-step explanation:
to proove : cot2A−cot2B=cosec2A−cosec2B
LHS : cot2A−cot2B
=(cosec2A−1)−(cosec2B−1)
=cosec2A−1−cosec2B+1
=cosec2A−cosec2B: RHS
Now the other one:
cot2A−cot2B=cos2A−cos2Bsin2A∗sin2B
LHS : cot2A−cot2B
=cosec2A−cosec2B {PROVED ABOVE}
=1sin2A−1sin2B
=sin2B−sin2Asin2A∗sin2B
=(1−cos2B)−(1−cos2A)sin2A∗sin2B
=1−cos2B−1+cos2Asin2A∗sin2B
=cos2A−cos2Bsin2A∗sin2B: RHS
please mark brainliestt dear ❣️❣️❣️❣️
Answered by
0
Answer:
=tan^2+cot^2+2tanA.cotA
=tan^2+cot^2+2
=(tan^2+1)+(cot^2+1)
=cosec^2A+sec^2A
Q.E.D.
Similar questions